\(\Delta\)ABC có các đường cao BD,CE. Gọi I là trung điểm BC.

a, CMR

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2018

A B C E D I a, Vì CE là đường cao của ΔABC

⇒ CE ⊥ AB

⇒ ΔEBC vuông tại E (1)

Vì I là trung điểm của BC

⇒ EI là đường trung tuyến của ΔEBC (trong tam giác vuông, đường trung tuyến ứng với cạnh huyền thì bằng nửa cạnh ấy) (2)

Từ (1), (2) ⇒ \(EI=\dfrac{1}{2}BC\)

Vì BD là đường cao của ΔABC

⇒ BD ⊥ AC

⇒ ΔBDC vuông tại D (3)

Vì I là trung điểm của BC

⇒ DI là đường trung tuyến của ΔBDC (4)

Từ (3), (4) ⇒ \(DI=\dfrac{1}{2}BC\)

Ta có

\(\left\{{}\begin{matrix}EI=\dfrac{1}{2}BC\\DI=\dfrac{1}{2}BC\end{matrix}\right.\) ⇒ EI = DI

Vì EI = DI

⇒ ΔEID cân tại I (đpcm)

b, Đề bài ??????????humlolang

Mình không hiểu !!!bucminhbucminh

mik xl mik vt thiếu

Đề bài là Gọi H,K,I lần lượt là hình chiếu vuông góc của B, C ,I trên đường thẳng ED. CMR I' là trung điểm của ED

30 tháng 4 2021

a) Xét ΔAHC và ΔHIC có:

ˆAHC=ˆHIC=90

ˆACH:chung

 ΔAHC  ΔHIC

 AH/HI=HC/IC

⇔AH.IC=HC.HI

b)Có AH/HI=HC/IC ( cmt)

mà IH = 2HO ( O là trung điểm của HI);

BC= 2HC ( H là trung điểm của BC )

=> AH/2HO=BC/2IC

=> AH/HO=BC/IC(1)

Mặt khác ˆAHO=ˆICB( cùng phụ góc IHC ) (2)

Từ (1) và (2) => Δ BIC  Δ AOH ( c.g.c)

c) Gọi D là giao điểm của AH và BI ; E là giao điểm của AO và BI

Vì ΔBIC  Δ AOH (cmb) => ˆIBH=ˆHAO

Lại có ˆBDH=ˆADE ( đối đỉnh )

=>ˆIBH+ˆBDH=ˆHAO+ˆADE

mà ˆIBH+ˆBDH=90

⇒AO⊥BI(đpcm)

2 tháng 2 2021

Bổ sung hình vẽ

18 tháng 11 2022

a: Ta có: ΔBKC vuông tại K

mà KM là trung tuyến

nên KM=BC/2

Ta có: ΔBHC vuông tại H

mà HM là trung tuyến

nên HM=BC/2

=>HM=KM

b: KẻMN vuông góc với HK

Vì ΔMHK cân tại M có MN là đường cao

nên N là trung điểm của HK

Xét hình thang BDEC có

M là trung điểm của B

MN//BD//EC

DO đó:N là trung điểm của DE

=>DN=NE

=>DK=HE