Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C E D O
a.Xét\(\Delta ADB\)và\(\Delta AEC\)có:
\(\widehat{BDA}=\widehat{CEA}=90^o\left(gt\right)\)
\(\widehat{A}\)chung
AB=AC(gt)
=> \(\Delta ADB=\Delta AEC\)(cạnh huyền góc nhọn)
b. Theo a ta có: \(\widehat{DBE}=\widehat{DCE}\)(2 góc tương ứng)
Mà \(\widehat{B}=\widehat{C}\)( tính chất tam giác cân)
=> \(\widehat{OBC}=\widehat{OCB}\)
=> Tam giác BOC cân tại O
câu b sai đề thì phải bạn ạ
còn câu c thì mình không biết M là giao điểm của BC với cạnh nào nên không làm được
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C M D E
a) Xét \(\Delta ABM\) và \(\Delta ACM\) có :
AB = AC ( gt )
BM = CM ( M là trung điểm BC )
AM : Cạnh chung
=> \(\Delta ABM\) = \(\Delta ACM\) ( c.c.c )
b) Ta có : \(\Delta ABM\) = \(\Delta ACM\) ( cmt )
=> \(\widehat{AMB}\) = \(\widehat{AMC}\) ( 2 góc tương ứng )
=> \(\widehat{AMB}\) = \(\widehat{AMC}\) = \(\frac{\widehat{BMC}}{2}\) = \(\frac {180} 2\) = 90
Hay AM \(\bot\) BC
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
![](https://rs.olm.vn/images/avt/0.png?1311)
a/
Xét tg ABM và tg ACM có
MB=MC (đề bài)
AB=AC (Do tg ABC cân tại A)
\(\widehat{ABC}=\widehat{ACB}\) (Do tg ABC cân tại A)
=> tg ABM=tg ACM (c.g.c)
Ta có MB=MC => AM là trung tuyến của tg ABC => \(AM\perp BC\) (trong tg cân đường trung tuyến đồng thời là đường cao)
b/
Xét tg vuông BME và tg vuông CMF có
MB=MC
\(\widehat{ABC}=\widehat{ACB}\)
=> tg BME = tg CMF (hai tg vuông có cạnh huyền và góc nhọn tương ứng bằng nhau) => ME=MF => tg EMF cân tại M
c/
Do \(AM\perp BC\Rightarrow\widehat{AMB}=\widehat{AMC}=90^o\)
Do tg BME = tg CMF \(\Rightarrow\widehat{BME}=\widehat{CME}\)
\(\Rightarrow\widehat{AME}=\widehat{AMF}\) (cungf phụ với \(\widehat{BME}\) = \(\widehat{CMF}\) )
=> AM là phân giác của \(\widehat{FME}\Rightarrow AM\perp EF\) (Trong tg can EMF đường phân giác đồng thời là đường cao)
Mà \(AM\perp BC\)
=> EF//BC (cùng vuông góc với AM)
bạn ghi đề hơi khó hiểu mình không hiểu MC.CM là cái gì
3)Gọi I là trung điểm của MC. Chứng minh:
a)ΔNIM,ΔNIC cân
b)NI=\(\frac{1}{2}\)MC