Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta ABC\)vuông tại A. Vẽ \(AH\perp BC\left(H\in BC\right).\)Tính AH biết: \(AB:AC=3:4;BC=25cm\)
Ta có: AB:AC=3:4 => \(\frac{AB}{3}\)=\(\frac{AC}{4}\)=>\(\frac{AB^2}{9}\)=\(\frac{AC^2}{16}\)=\(\frac{AB^2+AC^2}{9+16}\)=\(\frac{25}{25}\)=1
=> AB=3; AC=4 Mà AH=(AB+AC):2 =>AH=3,5
A C D E B
Kẻ DF vuông AH tại F
Xét \(\Delta\)DAF và \(\Delta\)ABH có: AD = AB ( gt ) ; ^DFA = ^AHB ( = 90 độ ) ; ^ADF = ^BAH ( cùng phụ ^ACH )
=> \(\Delta\)DAF = \(\Delta\)ABH ( cạnh huyền - góc nhọn )
=> DF = AH ( 1)
Nối DH Xét \(\Delta\)DFH và \(\Delta\)HED có: DH chung ; ^DFH = ^HED = 90 độ ; ^FDH = ^EHD ( vì DF//EH ( cùng vuông AH ); so le trong )
=> \(\Delta\)DFH = \(\Delta\)HED
=> DF = EH ( 2)
Từ (1) ; (2) => AH = EH
A B C H E F
Hình minh họa nhé !
a, Xét \(\Delta\)ABH và \(\Delta\)ACH ta có
AB = AC (gt)
^AHB = ^AHC = 90^0
AH chung
=> \(\Delta\)ABH = \(\Delta\)ACH (c.g.c) (1)
b, Vì (1) ta suy ra : BH = HC (tương ứng)
Ta có : \(BH=HC=\frac{BC}{2}=\frac{12}{2}=6\)cm
Áp dụng định lí Py ta go ta có :
\(AB^2=BH^2+AH^2\)
\(10^2=6^2+AH^2\)
\(100-36=AH^2\Leftrightarrow64=AH^2\Leftrightarrow AH=8\)cm
Tự xử c;d bn nhé !
Lâu rồi chưa làm dạng này có gì sai sót thì bạn comment xuống dưới nhé !
A H B C E F K
Lấy K đối xứng mới H qua B
Xét tam giác KAH có BK=BH; AF=FH nên BF là đường trung bình của tam giác HAH
\(\Rightarrow BF=\frac{AK}{2}\)
Tương tự \(HE=\frac{AC}{2}\)
Theo BĐT tam giác ta có được \(BF+HE=\frac{AC+AK}{2}>\frac{KC}{2}=\frac{KB+BC}{2}=\frac{BH+BC}{2}=\frac{\frac{1}{2}BC+BC}{2}=\frac{3}{4}BC\)
Vậy ta có đpcm
Bạn CTV gì đó ơi bạn ý nhờ làm câu d mà :)) Sao lại tự xử c,d được :V
a) Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC(ΔABC cân tại A)
AH chung
Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)
b) Ta có: ΔABH=ΔACH(cmt)
⇒BH=CH(hai cạnh tương ứng)
mà BH+CH=BC(H nằm giữa B và C)
nên H là trung điểm của BC
⇔\(BH=CH=\frac{BC}{2}=\frac{12cm}{2}=6cm\)
Áp dụng định lí pytago vào ΔABH vuông tại H, ta được:
\(AB^2=AH^2+BH^2\)
hay \(AH^2=AB^2-BH^2=10^2-6^2=64\)
\(\Leftrightarrow AH=\sqrt{64}=8cm\)
Vậy: AH=8cm
c) Xét ΔBAC có
H là trung điểm của BC(cmt)
HE//AC(gt)
Do đó: E là trung điểm của AB(định lí 1 vể đường trung bình của tam giác)
Xét ΔAHB vuông tại H có EH là đường trung tuyến ứng với cạnh huyền AB(E là trung điểm của AB)
nên \(EH=\frac{AB}{2}\)(định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)
mà \(EA=\frac{AB}{2}\)(E là trung điểm của AB)
nên EH=EA
Xét ΔAEH có EH=EA(cmt)
nên ΔEAH cân tại E(định nghĩa tam giác cân)
d) Ta có: F là trung điểm của AH(gt)
nên \(HF=\frac{AH}{2}=\frac{8}{2}=4cm\)
Ta có: \(HE=\frac{AB}{2}\)(cmt)
nên \(HE=\frac{10}{2}=5cm\)
Áp dụng định lí pytago vào ΔFHB vuông tại H, ta được:
\(FB^2=FH^2+BH^2\)
\(\Leftrightarrow FB^2=4^2+6^2=52\)
hay \(FB=\sqrt{52}=2\sqrt{13}cm\)
\(\Leftrightarrow BF+HE=2\sqrt{13}+5\simeq12,21cm\)
Ta có: \(\frac{3}{4}BC=\frac{3}{4}\cdot12=9cm\)
mà \(12,21>9\)
nên \(BF+HE>\frac{3}{4}BC\)(đpcm)
a)
Xét tam giác AHB và tam giác DBH có:
AH = DB (gt)
AHB = DBH (= 900)
BH chung
=> Tam giác AHB = Tam giác DBH (c.g.c)
b)
DB _I_ BC (gt)
AH _I_ BC (gt)
=> DB // AH
c)
Tam giác HAB vuông tại H có:
HAB + HBA = 900
350 + HBA = 900
HBA = 900 - 350
HBA = 550
Tam giác ABC vuông tại A có:
ABC + ACB = 900
550 + ACB = 900
ACB = 900 - 550
ACB = 350
a) ΔABD=ΔEBDΔABD=ΔEBD
b) AH//DE;ΔADIAH//DE;ΔADI cân
c) AE là tia phân giác của ˆHACHAC^
d) DC = 2AI
Giải thích các bước giải:
a) BD là phân giác của ˆABCABC^
⇒ˆABD=ˆEBD⇒ABD^=EBD^
Xét ΔABDΔABD và ΔEBDΔEBD có:
ˆBAD=ˆBED=900BAD^=BED^=900
BD chung
ˆABD=ˆEBDABD^=EBD^ (cmt)
⇒ΔABD=ΔEBD⇒ΔABD=ΔEBD (cạnh huyền - góc nhọn) (*)
b) AH⊥BC;DE⊥BCAH⊥BC;DE⊥BC
⇒AH//ED⇒AH//ED
⇒ˆAID=ˆIDE⇒AID^=IDE^
Từ (*)⇒ˆADI=ˆIDE⇒ADI^=IDE^
⇒ˆAID=ˆADI⇒AID^=ADI^
⇒ΔAID⇒ΔAID cân tại A
c) Từ (*)⇒AB=BE⇒AB=BE (hai cạnh tương ứng)
⇒ΔABE⇒ΔABE cân tại B
AE∩BD=KAE∩BD=K
⇒BK⇒BK vừa là phân giác vừa là đường cao
⇒BK⊥AE⇒BK⊥AE
Xét ΔAIDΔAID cân tại A có AK⊥IDAK⊥ID
⇒AK⇒AK vừa là đường cao vừa là đường phân giác
⇒AE⇒AE là tia phân giác ˆHACHAC^
d) ΔAIDΔAID cân tại A
⇒AI=AD⇒AI=AD
BD là phân giác của ˆABCABC^
⇒ABAC=ADDC=AIDC⇒ABAC=ADDC=AIDC
Để DC=2AI thì AIDC=ABAC=12⇒AC=2ABAIDC=ABAC=12⇒AC=2AB
Ta có hình vẽ:
Gọi phân giác C cắt AH tại M
Ta có: góc B + góc C = 900
Ta có: góc B + góc BAH = 900
=> góc BAH = góc C
Theo giả thiết, AI là phân giác của góc BAH
nên góc BAI = góc IAH
Theo giả thiết, CI là phân giác của góc C
nên góc HCI = góc ICA
Vì góc BAH = góc C nên góc IAH = góc HCI (1)
Ta có: góc IMA = góc HMC (đối đỉnh) (2)
Ta có: tổng ba góc của 1 tam giác bằng 1800 (3)
Từ (1),(2),(3) => góc AIM = góc MHC = 900
Vậy góc AIC = 900 (đpcm)
A B C H
Bài làm:
Ta có: \(\frac{AB}{AC}=\frac{3}{4}\Rightarrow AB=\frac{3}{4}AC\)
Vì tam giác ABC vuông tại A nên theo định lý Pytago ta có:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow\frac{9}{16}AC^2+AC^2=100\)
\(\Leftrightarrow\frac{25}{16}AC^2=100\Leftrightarrow AC^2=64\Rightarrow AC=8\left(cm\right)\Rightarrow AB=\frac{3}{4}AC=6\left(cm\right)\)
Lại có: \(AB\cdot AC=AH\cdot BC\left(=2S_{ABC}\right)\)
\(\Leftrightarrow6\cdot8=10AH\Leftrightarrow AH=\frac{6\cdot8}{10}=\frac{24}{5}\left(cm\right)\)
Vậy AH = 24/5(cm)
Xét \(\Delta ABC\) vuông tại A có:
\(BC^2=AB^2+AC^2\) (định lí Pytago)
\(\Rightarrow AB^2+AC^2=10^2=100\)
Ta có: \(AB:AC=3:4\Rightarrow\frac{AB}{3}=\frac{AC}{4}\Rightarrow\frac{AB^2}{9}=\frac{AC^2}{16}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{AB^2}{9}=\frac{AC^2}{16}=\frac{AB^2+AC^2}{9+16}=\frac{100^2}{25}=4\)
\(\Rightarrow\hept{\begin{cases}\frac{AB^2}{9}=4\\\frac{AC^2}{16}=4\end{cases}}\Rightarrow\hept{\begin{cases}AB^2=36\\AC^2=64\end{cases}}\Rightarrow\hept{\begin{cases}AB=6\left(cm\right)\\AC=8\left(cm\right)\end{cases}}\) (vì \(AB,AC>0\))
Ta có: \(S_{\Delta ABC}=\frac{AB.AC}{2}=\frac{AH.BC}{2}\)
\(\Rightarrow AB.AC=AH.BC\)
hay \(6.8=10AH\)
\(\Rightarrow AH=\frac{6.8}{10}=4,8\left(cm\right)\)
Vậy \(AH=4,8cm\).