Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Do tam giác ABC vuông tại A
=> Theo định lý py-ta-go ta có
BC^2=AB^2+AC^2
=>BC=\(\sqrt{AB^2+AC^2}\)= \(\sqrt{9^2+12^2}\)=\(\sqrt{225}\)=15
Vậy cạnh BC dài 15 cm
b)Xét Tam giác ABE vuông tại A và tam giác DBE vuông tại D có
BE là cạnh chung
AB=BD(Giả thiết)
=>Tam giác ABE=Tam giác DBE(CGV-CH)
B A C H D E K M
GT | △ABC (BAC = 90o) , AB = 9 cm , AC = 12 cm D BC : BD = BA. DK ⊥ BC (K AB , DK ∩ AC = { E } AH ⊥ BC , AH ∩ BE = { M } |
KL | a, BC = ? b, △ABE = △DBE ; BE là phân giác ABC c, △AME cân |
Bài giải:
a, Xét △ABC vuông tại A có: BC2 = AB2 + AC2 = 92 + 122 = 81 + 144 = 225 => BC = 15 (cm)
b, Xét △ABE vuông tại A và △DBE vuông tại D
Có: AB = BD (gt)
BE là cạnh chung
=> △ABE = △DBE (ch-cgv)
=> ABE = DBE (2 góc tương ứng)
Mà BE nằm giữa BA, BD
=> BE là phân giác ABD
Hay BE là phân giác ABC
c, Vì △ABE = △DBE (cmt)
=> AEB = DEB (2 góc tương ứng)
Vì DK ⊥ BC (gt)
AH ⊥ BC (gt)
=> DK // AH (từ vuông góc đến song song)
=> AME = MED (2 góc so le trong)
Mà MED = MEA (cmt)
=> AME = MEA
=> △AME cân
a, xét tam giác AHB và tam giác AHC có : AH chung
góc AHB = góc AHC = 90 do ...
AB = AC do tam giác ABC cân tại A (gt)
=> tam giác AHB = tam giác AHC (ch - cgv)
b, tam giác AHB = tam giác AHC (câu a)
=> góc BAH = góc CAH (đn)
có HD // AC (gt) => góc DHA = góc HAC (slt)
=> góc DHA = góc DAH
=> tam giác DAH cân tại D (tc)
a) Xét \(\Delta AKB\)và \(\Delta AKC\)có:
AB = AC (gt)
AK là cạnh chung
KB = KC (gt)
\(\Rightarrow\Delta AKB=\Delta AKC\left(c-c-c\right)\)
b) Ta có: \(\Delta AKB=\Delta AKC\)(theo a)
\(\Rightarrow\widehat{AKB}=\widehat{AKC}\)(2 góc tương ứng)
Mà \(\widehat{AKB}+\widehat{AKC}=180^o\)(2 góc kề bù)
\(\Rightarrow\widehat{AKB}=\widehat{AKC}=90^o\)
\(\Rightarrow AK\perp BC\)
c) Ta có: \(\hept{\begin{cases}EC\perp BC\\AK\perp BC\end{cases}\Rightarrow EC//AK}\)