\(\Delta ABC\)vuông cân tại A có\(D\in AB\).Đường thẳng đi...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2019

Bạn tự vẽ hình nha

a) Ta có:\(AK\perp HC\\ EH\perp HC\Rightarrow AK//EH\)

nên  \(\widehat{BEA}=\widehat{KAC}\)(2 góc đồng vị)

Mà \(\widehat{BAE}=\widehat{CKA}\left(=90^0\right)\)

\(\Rightarrow\widehat{EBA}=\widehat{ACK}\)

b)Xét \(\Delta\)IBA và \(\Delta\)KCA có:\(\hept{\begin{cases}\widehat{IBA}=\widehat{KCA}\left(cmt\right)\\\widehat{BAE}=\widehat{CKA}=90^0\\AB=AC\left(gt\right)\end{cases}}\)

Suy ra đpcm

c) Theo b ta có được IA =AK

mà \(\widehat{HIA}=\widehat{IHK}=\widehat{HKA}=90^0\)

nên IHKA là hình vuông

nên HA là phân giác IHK (tính chất nha)

hay HA là phân giác EHC

23 tháng 12 2018

sửa lại cái đề hộ cái,sao cho ad+ah là sao?

Bài 1: Cho \(\Delta ABC\),đường cao AH. Trên nửa mặt phẳng  bờ BC có chứa điểm A lấy 2 điểm D và E sao cho \(\Delta ABK\)và \(\Delta ACE\)vuông cân tại B và C. Trên tia đối của tia AH lấy điểm K sao cho AK=BC. Chứng minh rằng:   a) \(\Delta ABK=\Delta BDC\)   b)\(CD\perp BK\)và \(BE\perp CK\)    c) Ba đường thẳng AH, BE, CD đồng quyBài 2: Cho \(\Delta ABC\) vuông tại A. Trên cạnh AC lấy điểm D sao...
Đọc tiếp

Bài 1: Cho \(\Delta ABC\),đường cao AH. Trên nửa mặt phẳng  bờ BC có chứa điểm A lấy 2 điểm D và E sao cho \(\Delta ABK\)và \(\Delta ACE\)vuông cân tại B và C. Trên tia đối của tia AH lấy điểm K sao cho AK=BC. Chứng minh rằng:

   a) \(\Delta ABK=\Delta BDC\)

   b)\(CD\perp BK\)và \(BE\perp CK\)

    c) Ba đường thẳng AH, BE, CD đồng quy

Bài 2: Cho \(\Delta ABC\) vuông tại A. Trên cạnh AC lấy điểm D sao cho \(\widehat{ABC}=3\widehat{ABD}\),trên canh AB lấy diểm E sao cho \(\widehat{ACB}=3\widehat{ACE}\).Gọi F là giao điểm của BD và CE. I là giao điểm các đường phân giác của\(\Delta BFC\).

       a)Tính số đo \(\widehat{BFC}\)

       b)Chứng minh \(\Delta BFE=\Delta BFI\)

       c) Chứng minh IDE là tam giác đều

       d)Gọi Cx là tia đối của tia CB, M là giao điểm của FI và BC. Tia phân giác của \(\widehat{FCx}\)cắt tia BF tại K. Chứng minh MK là tia phân giác của \(\widehat{FMC}\)

      e) MK cắt CF tại điểm N. Chứng minh B, I, N thẳng hàng

0
1 tháng 12 2018

hình bạn tự vẽ nha

a) \(\Delta ABC\)\(\stackrel\frown{B}=\stackrel\frown{C}\) \(\Rightarrow\Delta ABC\)cân tại \(\stackrel\frown{A}\)(1)

vì BD là tia phân giác của \(\stackrel\frown{B}\)\(\Rightarrow\stackrel\frown{ABD=}\)\(\stackrel\frown{CBD}\)(2)

vì ce là phân giác của \(\stackrel\frown{C}\Rightarrow\stackrel\frown{ECB=\stackrel\frown{ECA}}\)(3)

từ (1),(2),(3) \(\Rightarrow\stackrel\frown{CBD}=\stackrel\frown{DBA}=\stackrel\frown{BCE}=\stackrel\frown{ECA}\)

xét tam giác BCD và tam giác CBE có:

\(\stackrel\frown{CBD}=\stackrel\frown{BCE}\)

\(\stackrel\frown{B}=\stackrel\frown{C}\)

BC chung

\(\Rightarrow\)\(\Delta BCD=\Delta CBE\left(ch-gn\right)\)

b) \(\Delta BOC\)\(\stackrel\frown{OBC}=\stackrel\frown{OCB}\)\(\Rightarrow\Delta BOC\)cân tại O \(\Rightarrow OB=OC\)

c) xét \(\Delta AOB\)\(\Delta AOC\)

AO chung

AB=AC

\(\stackrel\frown{ABO}=\stackrel\frown{ACO}\)

\(\Rightarrow\Delta AOB=\Delta AOC\left(ch-gn\right)\)

\(\Rightarrow\stackrel\frown{BAO}=\stackrel\frown{CAO}\Rightarrow\stackrel\frown{OAD}=\stackrel\frown{OAK}\)

\(OH\perp AC\Rightarrow\stackrel\frown{OHA}=90^o\)

\(OK\perp AB\Rightarrow\stackrel\frown{OKA}=90^o\)

Xét \(\Delta OAK\)\(\Delta OAH\)có:

\(\stackrel\frown{OKA}=\stackrel\frown{OHA}=90^o\)

\(\stackrel\frown{OAK}=\stackrel\frown{OAH}\)

OA chung

\(\Rightarrow\Delta OAK=\Delta OAH\left(ch-gn\right)\)

\(\Rightarrow OH=OK\)

nếu sai ở đâu mong bạn bỏ qua cho nhaok