\(cho\Delta ABC\perp A,\)tia phân giác của \(\widehat{B}\)cắt...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Violympic toán 7

a) Vì tam giác ABC cân tại A

=> AB = AC và Góc ABC = Góc ACB

Xét tam giác AHC và tam giác AHB, ta có:

Góc AHB = AHC ( = 90 độ )

AB = AC (cmt)

Góc ABC = Góc ACB ( cmt)

=> Tam giác AHC = Tam giác AHB ( ch-gn )

b) Vì tam giác AHC = Tam giác AHB ( câu a )

=> BH = HC ( Hai cạnh tương ứng )

Xét tam giác BHN và tam giác CHM, ta có:

BH = HC ( cmt )

Góc BHN = Góc CHM ( Hai góc đối đỉnh )

HN = HM ( gt )

=> Tam giác BHN = Tam giác CHM ( c-g-c )

=> Góc HMC = Góc BNH ( Hai góc tương ứng )

Mà góc HMC và góc BNH là hai góc so le trong

=> BN // AC

c) Xét tam giác MHC và tam giác QHB, ta có:

Góc HMC = Góc HQB ( = 90 độ )

Góc MCH = Góc QBH ( do tam giác ABC cân tại A )

HC = HB ( câu b )

=> Tam giác MHC = Tam giác QHB ( ch-gn )

=> Góc MHC = Góc QHB

Mà góc MHC = Góc BHN ( Hai góc đối đỉnh )

=> Góc QHB = Góc BHN

Xét tam giác AQH và tam giác AMH, ta có:

Góc AQH = Góc AMH ( = 90 độ )

AH là cạnh huyền chung

Góc QAH = Góc MAH ( vì tam giác ABH = tam giác ACH )

=> Tam giác AQH = Tam giác AMH ( ch-gn )

=> QH = HM ( Hai cạnh tương ứng )

Mà HM = HN ( gt )

=> QH = HN

Gọi K là trung điểm của QN

Xét tam giác KHQ và tam giác KHN, ta có:

HQ = HN ( cmt )

Góc QHB = Góc BHN ( cmt )

HK là cạnh chung

=> Tam giác KHQ = Tam giác KHN ( c-g-c )

=> Góc QKH = Góc NKH ( Hai góc tương ứng ) và QK = QN ( Hai cạnh tương ứng )

Mà góc QKH và góc NKH là hai góc kề bù

=> Góc QKH = Góc NKH = 180/2 = 90 độ

=> HK là đường trung trực của QN

Hay BC là đường trung trực của QN

a: Ta có: AB\(\perp\)AC

KE\(\perp\)AC

Do đó: AB//KE

b: Ta có: AB//KE

nên \(\widehat{ABC}=\widehat{KEC}\)

Xét ΔACB vuông tại A và ΔKCE vuông tại K có

CA=CK

\(\widehat{ACB}=\widehat{KCE}\)

Do đó:ΔACB=ΔKCE

Suy ra:CB=CE

Câu 1:a) \(\Delta ABC\)có BD và CE là 2 đường trung tuyến và \(BD^2+CE^2=\frac{9}{4}BC^2\). C/m \(BD⊥CE\)tại G.b)\(\Delta ABC\)có BC=a, AC=b, AB=c. Hai đường trung tuyến AM và BN vuông góc với nhau tại G. C/m\(a^2+b^2=5c^2\)Câu 2: Cho \(\Delta ABC\)cân tại A có BC=a và cạnh bên bằng cạnh huyền của tam giác vuông cân có cạnh góc vuông bằng a. Tính độ dài đường trung tuyến BM của \(\Delta ABC\)theo a.Câu 3: Cho \(\Delta...
Đọc tiếp

Câu 1:

a) \(\Delta ABC\)có BD và CE là 2 đường trung tuyến và \(BD^2+CE^2=\frac{9}{4}BC^2\). C/m \(BD⊥CE\)tại G.

b)\(\Delta ABC\)có BC=a, AC=b, AB=c. Hai đường trung tuyến AM và BN vuông góc với nhau tại G. C/m\(a^2+b^2=5c^2\)

Câu 2: Cho \(\Delta ABC\)cân tại A có BC=a và cạnh bên bằng cạnh huyền của tam giác vuông cân có cạnh góc vuông bằng a. Tính độ dài đường trung tuyến BM của \(\Delta ABC\)theo a.

Câu 3: Cho \(\Delta ABC\), trung tuyến CD. Đường thẳng qua D và song song với BC cắt AC tại E. Đường thẳng qua D và song song với AC cắt BC tại F. Trên tia đối của tia BD lấy N sao cho BN=BD. Trên tia đối của tia CB lấy M sao cho CM=CF, gọi giao điểm của MD và AC là K. C/m N, F, K thẳng hàng.

Câu 4: Cho \(\Delta ABC\)có BC=2AB. Gọi M, I lần lượt là trung điểm của BC và BM. C/m AC=2AI và AM là tia phân giác của\(\widehat{CAI}\).

Câu 5: Cho \(\Delta ABC\),trung tuyến BM. Trên tia BM lấy 2 điểm G và K sao cho \(BG=\frac{2}{3}BM\) và G là trung điểm BK, gọi N là trung điểm KC , GN cắt CN tại O. C/m: \(GO=\frac{1}{3}BC\)  

(Bạn giải được câu nào thì giải, nhớ vẽ hình và ghi lời giải đầy đủ) 

0