Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D 1 2 6v5
( v là căn nha bạn ; Ví dụ 8v5 là 8căn5 nha )
Ta có : \(SinABC=\frac{AC}{BC}\)
Mà : gócABC = 2.gócB2 ( BD là đường phân giác )
Do đó : \(SinABC=2.SinB_2\)
\(\Rightarrow sinB_2=\frac{1}{2}SinABC=\frac{1}{2}.\frac{AC}{BC}=\frac{AC}{2BC}\)
Ta có : \(SinB_1=\frac{AD}{BD}\)
Mà : góc B1 = góc B2 ( BD là đường phân giác )
\(\Rightarrow\frac{AD}{BD}=\frac{AC}{2BC}\)
\(\Rightarrow2BC=\frac{AC.BD}{AD}\)
\(\Rightarrow BC=\frac{AC.BD}{2.AD}=\frac{\left(AD+DC\right).6v5}{2.AD}\) ( 1 )
Ta có : 5AD = 3DC ( gt )
\(\Rightarrow AD=\frac{3DC}{5}=\frac{3}{5}DC\)
Thay : \(AD=\frac{3}{5}DC\) vào ( 1 ) Ta được :
\(BC=\frac{6v5.\left(\frac{3}{5}DC+DC\right)}{2.\left(\frac{3}{5}DC\right)}\)
\(BC=\frac{6v5.\left(\frac{8}{5}DC\right)}{\frac{6}{5}DC}\)
\(BC=\frac{\frac{48v5}{5}DC}{\frac{6}{5}DC}\)
\(BC=\frac{48v5}{6}\)
\(BC=8v5\)
Vậy BC = 8v5 cm
Học tốt !!!
A B C
a, Xét tam giác ABC vuông tại A, áp dụng định lí Pytago ta có:
BC2 = AB2 + AC2
BC2 = 212 + 722
BC2 = 5625
BC = 75 (cm)
b, Tam giác ABC vuông tại A, đường cao AH
Ta có: AB2 = BH . BC (định lí 1)
212 = BH . 75
BH = 441 : 75
BH = 5,88 (cm)
Ta có : BC = BH + HC
75 = 5,88 + HC
HC = 75 - 5,88
HC = 69,12 (cm)
Ta có: AH2 = BH . HC
AH2 = 5,88 . 69,12
AH2 = 406,4256
AH = 20,16 (cm)
c, (Bạn tự vẽ tia p/g nha)
Theo tính chất đường phân giác góc B ta có:
=> AD/ DC = AB/ BC
=> AD/ AB = DC/BC
=> AD/ 21 = DC/ 75
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
AD/21 = DC/ 75 = AD + DC/ 21 + 75 = AC/ 96 = 72/ 96 = 3/4
=> AD/ 21 = 3/4 => AD = 15,75 (cm)
=> DC/ 75 = 3/4 => DC = 56, 25 (cm)
Mình không biết bạn có đánh sai số hay không mà số chênh nhau lớn quá, nếu bạn đánh sai thì chỉ cần thay số trong bài mình làm cho bạn là được nha :33
CHÚC BẠN HỌC TỐT !!!
Theo tính chất tia phân giác ta có: \(\frac{AD}{CD}=\frac{AB}{BC}=\frac{3}{5}\Rightarrow\sin C=\frac{3}{5}=\cos B\).
\(\cos B=\frac{3}{5}\Rightarrow B\approx53^07'48,37"\Rightarrow ABD=26^033'54,18"\).
Ta có: \(AB=BD.\cos ABD=6\sqrt{5}.\cos26^033'54,18"=12\).
AB = 12 => AC = 20 .Aps dụng ĐL Py-ta-go ta có:
\(BC=\sqrt{AB^2+AC^2}=\sqrt{15^2+20^2}=25\)
A B C D K 3 2 a
Kẻ CK vuông góc AB. Xét tam giác vuông AKC có \(\widehat{KAC}=45^o\) nên AKC là tam giác vuông cân.
Vậy thì KA = KC.
Đặt \(KA=KC=a\Rightarrow AC=a\sqrt{2};KB=\sqrt{25-a^2};AD=\sqrt{2a^2-4}\) (Theo Pi-ta-go)
Ta đã có \(2S_{ABC}=AB.CK=BC.AD\)
\(\Rightarrow\left(a+\sqrt{25-a^2}\right).a=5.\sqrt{2a^2-4}\)
\(\Rightarrow\left(a^2+25-a^2+2a\sqrt{25-a^2}\right)a^2=25\left(2a^2-4\right)\)
\(\Rightarrow25a^2+2a^3\sqrt{25-a^2}=50a^2-100\)
\(\Rightarrow2a^3\sqrt{25-a^2}=25a^2-100\)
Ở đây ta có điều kiện là \(4\le a^2\le25\)
\(\Rightarrow4x^6\left(25-a^2\right)=625a^4-5000a^2+10000\)
\(\Rightarrow-4x^8+100x^6-626x^4+5000x^2-10000=0\)
Đặt x2 = t , ta có \(-4t^4+100t^3-625t^2+5000t-10000=0\)
\(\Leftrightarrow\left(t-20\right)\left(2t-5\right)\left(-2t^2+5t-200\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t=20\\t=\frac{5}{2}\left(ktmđk\right)\end{cases}}\)
Vậy t = 20 hay \(a^2=20\Rightarrow S_{ABC}=\frac{1}{2}.5.\sqrt{2.20-4}=15\left(cm^2\right)\)