Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: M và D đối xứng nhau qua AB
nên AB là đường trung trực của MD
=>AM=AD
Xét ΔAMD có AM=AD
nên ΔAMD cân tại A
mà AB là đường cao
nên AB là phân giác của góc MAD(1)
Ta có: M và E đối xứng nhau qua AC
nên AC là đường trung trực của ME
=>AM=AE
mà AC là đường cao
nên AC là tia phân giác của góc MAE(2)
Ta có: AM=AD
AM=AE
Do đó: AD=AE
b: Từ (1) và (2) suy ra \(\widehat{EAD}=2\cdot\left(\widehat{BAM}+\widehat{CAM}\right)=180^0\)
nên E,A,D thẳng hàng
a: Ta có: D và M đối xứng nhau qua AB
nen AD=AM
=>ΔADM cân tại A
mà AB là đường cao
nên AB là phân giác của góc DAM(1)
Ta có: M và E đối xứng nhau qua AC
nên AC là đường trung trực của ME
=>AM=AE
=>ΔAME cân tại A
mà AC là đường cao
nên AC là phân giác của góc MAE(2)
Ta có: AD=AM
AM=AE
Do đó: AD=AE
b: Từ (1) và (2) suy ra góc DAE=2xgóc BAC=140 độ
a) D đx với m qua AB
=> AB là trung trực của MD
=> AD=AM
E đx với M qua AC
=> AM=AE
=> AD=AE
b) AD=AM => tam giác ADM cân
=>góc DAB =góc MAB
tam giác AME cân
=> góc MAC= góc CAE
do đó: DAB+MAB+MAC+CAE=2(MAB+MAC)=2.70=140 độ
hay góc DAE=140 độ
A B C M D E
Nối A vs M
a) ta có: M đối xưng vs D qua AB=> AB là đg trung trực của DM =>AD=AM(ĐL) (1)
Do M đx vs E qua AC nên AC là đg trung trực của ME=>AE=AM (2)
từ (1),(2) => AD=AE
b)ta có : DAB = BAM (vì AB là đg tt của DM) =>DAB+BAM=2. BAM (3)
mặt khác: EAC=CAM(vì AC là đg tt của EM)=>EAC+CAM=2.CAM (4)
từ (3),(4)=>DAB+BAM+MAC+CAE=2(BAM+CAM)=2.90=180 (vì BAM+CAM=BAC=90)
=>3 điểm D,A,E thẳng hàng
Lời giải bạn Thanh đúng rồi, mình vẽ hình và trình bày lại cho rõ hơn như sau:
A B C M D E I K
a) Do D và M đối xứng qua AB nên AD = AM
E và M đối xứng qua AC nên AE = AM
=> AD = AE (vì cùng bằng AM)
b) Theo câu a) thì AD = AE nên tam giác ADE cân => \(\widehat{ADE}=\widehat{AED}\) (1)
tam giác AID = tam giác AIM t(trường hợp CGC) vì có AI chung, AD = AM, \(\widehat{DAI}=\widehat{IAM}\)
=> \(\widehat{ADI}=\widehat{AMI}\) (2)
Tương tự: \(\widehat{AEK}=\widehat{AMK}\) (3)
Từ (1), (2) và (3) suy ra \(\widehat{AMI}=\widehat{AMK}\) +> AM là phân giác góc \(\widehat{IMK}\)
c) Ta có: \(\widehat{DAB}=\widehat{MAB}\) , \(\widehat{EAC}=\widehat{MAC}\) (do tính chất đối xứng)
=> \(\widehat{DAE}=2.\widehat{BAC}\) là đại lượng không đổi khi M di chuyển trên BC.
=> \(DE^2=AD^2+AE^2-2.AD.AE.\cos\widehat{DAE}\)
Mà AD = AE = AM
=> \(DE^2=AM^2+AM^2-2.AM.AM.\cos\left(2.\widehat{BAC}\right)\)
\(=2.AM^2\left[1-\cos2\widehat{BAC}\right]\)
=> DE nhỏ nhất khi AM nhỏ nhất => M là chân đường cao hạ từ A xuống BC
BAI NAY DE QUA NHO K DUNG NHA !
cau a
vi D,M doi xung nen tam giac ADM co AD=AM
cmtt voi tam giac AME nen co AM=AE
tu do co AD=AE
cau b
cm tam AIK=tam giac AIM do chung AD;AD=AM;DAI=MAI
nen goc AID= goc AMI
CMTT VOI tam giacAKM va AKE CO AMK=AEK
co AD = AE NEN TAM GIAC ADE CAN NE ADI=AEK
TU LAM NOT CAU C GOI Y AM LA DUONG CAO THI DE NHO NHAT
a: Ta có M và D đối xứng nhau qua AB
nên AM=AD
=>ΔAMD cân tại A
mà AB là đường cao
nên AB là phân giác
b: Ta có: M và E đối xứng nhau qua AC
nên AM=AE
=>AE=AD
a: Ta có: M và D đối xứng nhau qua AB
nên AB là đường trung trực của MD
=>AM=AD
=>ΔAMD cân tại A
mà AB là đường cao
nên AB là phân giác của góc MAD(1)
Ta có: M và E đối xứng nhau qua AC
nên AC là đường trung trực của ME
=>AM=AE
=>ΔAME cân tại A
mà AC là đường cao
nên AC là tia phân giác của góc MAE(2)
Ta có: AD=AM
AE=AM
Do đó: AE=AD
b: Từ (1) và (2) suy ra góc DAE=2xgóc BAC=140 độ
=>góc AED=(180-140)/2=20 độ
Chúc bạn học tốt!