Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét \(\Delta ABM\) và \(\Delta ACM\) có:
\(BM=CM\left(M-là-tr.điểm-BC\right)\)
\(\widehat{B_1}=\widehat{C_1}\left(\Delta ABC-cân-tại-A\right)\)
\(AB=AC\left(\Delta ABC-cân-tại-A\right)\)
\(\Rightarrow\Delta ABM=\Delta ACM\left(c-g-c\right)\left(đpcm_1\right)\)
b, Xét \(\Delta ABC\) có:
\(D-là-tr.điểm-của-AB\)
\(E-là-tr.điểm-của-AC\)
\(\Rightarrow DE//BC\)
Mà: \(\widehat{AMB}=\widehat{AMC}=\frac{180^0}{2}=90^0\)
\(\Rightarrow AM\perp BC\)
Từ trên ta có: \(\left\{{}\begin{matrix}AM\perp BC\\DE//BC\end{matrix}\right.\Rightarrow DE\perp AM\left(đpcm_2\right)\)
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
A B C M N D
a, xét tam giác ABN và tam giác ACM có :
góc A chung
AB = AC (gt)
AN = AM (gt)
=> tam giác ABN = tam giacd ACM (c-g-c)
=> BN = CM (đn)
b, có AB = AC (gt)
AB = BM + MA
AC = CN + NA
AM = AN (gt)
=> BM = CN
AB = AC (gt) => tam giác ABC cân tại A (đn) => góc ABC = góc ACB (tc)
xét tam giác BCM và tam giác CBN có : BC chung
=> tam giác BCM = tam giác CBN (c-g-c)
c, tam giác BCM = tam giác CBN (Câu b)
=> góc DBC = góc DCB (đn) mà góc DBC = 30
xét tam giác DBC có : góc DBC + góc DCB + góc BDC = 180 (đl)
góc BDC = 180 - 30.2 = 120
mà góc BDC = góc MDN (đối đỉnh)
=> góc MDN = 120
a) Xét ΔABN và ΔACM có:
AB=AC
^BAC: góc chung
AM=AN
=>ΔABN=Δacm(c.g.c)
=>BN=CM(hai cạnh tương ứng )
b) Ta có:
AB=AC
AM=AN
=>MB=NC
Xét ΔBCM và ΔCBN có:
MB=NC
BC:cạnh chung
BN=CM
=>ΔBCM=ΔCBN(c.c.c)
c) Vì ^BDC và ^MDN là hai góc đối đỉnh
=>^BDC=^MDN
=>^MDN=30°