\(\Delta ABC\)có 3 góc nhọ. Gọi AD, BE, CF là các đường cao của \...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2017

A B C D E O H F

a) Tự chứng minh 

b) Diện tích của tứ giác có 2 đường chéo vuông góc với nhau là nửa tích 2 đường chéo.

Theo câu a, \(OA⊥EF\)nên \(S_{AEOF}=\frac{1}{2}OA.EF=\frac{1}{2}R.EF\)

tương tự:\(S_{BDOF}=\frac{1}{2}DF.OB=\frac{1}{2}R.DF\);\(S_{DOEC}=\frac{1}{2}.OC.DE=\frac{1}{2}R.DE\)

\(\Rightarrow S_{AEOF}+S_{BDOF}+S_{DOEC}=\frac{1}{2}R.P\)

hay \(S_{ABC}=\frac{1}{2}R.P=\frac{1}{4}.2RP\le\frac{R^2+P^2}{4}\)(Theo BĐT AM-GM)

a: Xét tứ giác BFEC có \(\widehat{BFC}=\widehat{BEC}=90^0\)

nên BFEC là tứ giác nội tiếp

b: \(\widehat{HEF}=\widehat{QCB}\)

\(\widehat{HPQ}=\widehat{QCB}\)

Do đó: \(\widehat{HEF}=\widehat{HPQ}\)

=>EF//QP

a: Xét ΔCDA vuông tại D và ΔCEB vuông tại E có

góc C chung

Do đó: ΔCDA đồng dạng với ΔCEB

Suy ra: CD/CE=CA/CB

hay \(CD\cdot CB=CE\cdot CA\left(1\right)\)

b: Xét ΔCIB vuông tại I có ID là đường cao

nên \(CI^2=CD\cdot CB\left(2\right)\)

Xét ΔCQA vuông tại Q có QE là đường cao

nên \(CQ^2=CE\cdot CA\left(3\right)\)

Từ (1), (2)và (3) suy ra CI=CQ

hay ΔCIQ cân tại C