Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(Chẳng biết đề có sai ko nữa?)
Bây giờ vẽ đường tròn tâm \(O\) ngoại tiếp tam giác \(ABC\) và cho 2 tia tiếp tuyến tại \(B\) và \(C\) của đường tròn gặp nhau tại \(K\).
Khi đó, \(\widehat{BAK}=\widehat{MAC}\) tức là \(AH\) trùng với \(AK\) hoặc 2 tia này đối xứng nhau qua \(AB\).
Ta sẽ CM khả năng thứ 2 vô lí như sau: Theo gt thì \(\widehat{CAH}=\widehat{MAB}\) nên hoàn toàn tương tự (đổi chỗ \(B,C\)) sẽ có \(AH,AK\) đối xứng qua \(AC\) (mâu thuẫn với khả năng thứ 2).
Vậy \(AH\) trùng với \(AK\). Nhưng như vậy thì tam giác này cân nên (???)
a) AM ứng với cạnh huyền BC nên AM = \(\frac{1}{2}\) x BC = \(\frac{4}{2}\) = 2 cm
AH = tan\(\widehat{ACH}\)x HM = tan 150 x 2 = \(4-2\sqrt{3}\)cm
Sin \(\widehat{AMH}\)= \(\frac{AH}{AM}\)= \(\frac{4-2\sqrt{3}}{2}\) = \(2-\sqrt{3}\) cm
Định lí Pitago : AM2 = AH2 + HM2
HC = tan \(\widehat{ACH}\)x AH
bạn tự vẽ hình nha
áp dụng hệ thức lượng vào tam giác vuông AHC có AH=\(\tan30\cdot HC=\tan30\cdot6=2\sqrt{3}\)
tuong tu \(AB=\frac{AH}{\sin35}=\frac{2\sqrt{3}}{\sin35}\approx6\)