Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B O C I P M K Q
a) Đường tròn (O) có đường kính AB và điểm C nằm trên cung AB => ^ACB=900 hay ^PCB=900
Xét tứ giác BCPI: ^PCB=900; ^PIB=900 => Tứ giác BCPI nội tiếp đường tròn (Tâm là trung điểm BP)
b) Xét \(\Delta\)AMB: AC\(\perp\)BM; MI\(\perp\)AB; AC cắt MI tại P => P là trực tâm của \(\Delta\)AMB
Dễ thấy: BK\(\perp\)AM => B;P;K là 3 điểm thẳng hàng (đpcm).
c) Nhận xét: Khi BC=R thì BC=OC=OB=OA => \(\Delta\)ABC là tam giác nửa đều có ^CBA=600
=> ^ACO=300. Do AQ là tiếp tuyến của (O) nên ^ACO+^QCA=900 => ^QCA = 600 (1)
Theo t/c 2 tiếp tuyến cắt nhau => QA=QC (2)
Từ (1) và (2) => \(\Delta\)AQC là tam giác đều => AQ=AC
Dễ có: AC=\(\sqrt{3}R\)=> AQ=\(\sqrt{3}R\)
Xét \(\Delta\)MIB: ^MBI=600; ^MIB=900 => \(\Delta\)MIB là tam giác nửa đều => BI= BM/2
Để ý thấy I là trung điểm OA => BI=3/2R => BM = 2.3/2R = 3R
Dựa vào ĐL Pytagore, ta tính được: \(MI^2=9R^2-\frac{9}{4}R^2=R^2.\left(\frac{36-9}{4}\right)=\frac{R^2.27}{4}\)
\(\Rightarrow MI=\frac{\sqrt{27}.R}{2}\)
\(\Rightarrow S_{QAIM}=\frac{\left(\sqrt{3}R+\frac{\sqrt{27}R}{2}\right).\frac{R}{2}}{2}=\frac{R.\left(\sqrt{3}+\frac{3\sqrt{3}}{2}\right).\frac{R}{2}}{2}\)\(=\frac{R^2.\frac{5\sqrt{3}}{4}}{2}=\frac{5\sqrt{3}.R^2}{8}\)
Vậy \(S_{QAIM}=\frac{5\sqrt{3}.R^2}{8}\).
Cả 3 bài này đều sử dụng định lí Pascal
B1: Với các điểm: NAMCIB cùng thuộc đường tròn (O)
NC cắt BM tại H; NI cắt AB tại P ; MI cắt AC tại Q
=> P; H ; Q thẳng hàng
B2: Xét các điểm ADCIBE cùng thuộc đường tròn (O)
B3: Tương tự.
A B C K M N H O
1) Dễ thấy ^CHN = ^CKN = 900 => Bốn điêm C,H,K,N cùng thuộc đường tròn đường kính CN
Hay tứ giác CNKH nội tiếp đường tròn (CN) (đpcm).
2) Sđ(BCnhỏ = 1200 => ^BOC = 1200 => ^BNC = 1/2.Sđ(BCnhỏ = 1/2.^BOC = 600
Vì tứ giác CNKH nội tiếp (cmt) nên ^KHC = 1800 - ^CNK = 1800 - ^BNC = 1200.
3) Hệ thức cần chứng minh tương đương với:
2KN.MN = AM2 - AN2 - MN2 <=> 2KN.MN = MN.MB - MN2 - AN2 (Vì AM2 = MN.MB)
<=> 2KN.MN = MN.BN - AN2 <=> AN2 = MN(BN - 2KN)
<=> AK2 + KN2 = MN(BK - KN) (ĐL Pytagoras) <=> AK2 + KN.KM = MN.BK
<=> AM2 - (MK2 - KN.KM) = MN.BK (ĐL Pytagoras) <=> AM2 - MK.MN = MN.BK
<=> AM2 = MN(BK + MK) = MN.MB <=> AM2 = AM2 (Hệ thức lượng đường tròn) (Luôn đúng)
Do đó hệ thức ban đầu đúng. Vậy KN.MN = 1/2.(AM2 - AN2 - MN2) (đpcm).
M A B H O N I K C D O'
1) Xét đường tròn tâm O' đường kính AN: Điểm I thuộc (O') => ^AIN=900 => ^NIB=900
Xét tứ giác NHBI: ^NHB=^NIB=900 => Tứ giác NHBI nội tiếp đường tròn (đpcm).
2) Ta có tứ giác AKNI nội tiếp (O') => ^KAI+^KNI=1800 (1)
Tứ giác NHBI nội tiếp đường tròn (cmt) => ^INH+^IBH=1800 (2)
MA và MB là 2 tiếp tuyến của (O;R) => MA=MB => \(\Delta\)AMB cân tại M
=> ^MAB=^MBA hay ^KAI=^IBH (3)
Từ (1); (2) và (3) => ^KNI=^INH
Ta thấy: ^NKI=^NAI (Cùng chắn cung NI)
Theo t/c góc tạo bởi tiếp tuyến và dây cung => NAI=^NBH
=> ^NKI=^NBH. Mà ^NBH=^NIH (Cùng chắn cung HN) => ^NKI=^NIH
Xét \(\Delta\)NHI và \(\Delta\)NIK: ^NIH=^NKI; ^KNI=^INH (cmt) => \(\Delta\)NHI~\(\Delta\)NIK (g.g) (đpcm).
3) ^NIH=^NKI. Mà ^NKI=^NAI => ^NIH=^NAI hay ^NIC=^NAB (4)
^NIK=^NAK (Chắn cung NK). Mà ^NAK=^NBA (Góc tạo bởi tiếp tuyến và dây cung)
=> ^NIK=^NBA hay ^NID=^NBA (5)
Cộng (4) & (5) => ^NIC+^NID = ^NAB+^NBA = 1800 - ^ANB = 1800-^CND
=> ^CID+^CND=1800 => Tứ giác CNDI nội tiếp đường tròn => ^NDC=^NIC
Lại có: ^NIC=^NKI=^NAI => ^NDC=^NAI (2 góc đồng vị) => CD//AI hay CD//AB (đpcm).