\(Cho\)\(a\ge0,b\ge0\): và a,b thỏa mãn ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2020

Từ gt⇒0≤b≤2−2a3≤2;0≤b≤4−2a≤4⇒0≤b≤2−2a3≤2;0≤b≤4−2a≤4            

⇒0≤b≤2⇒0≤b≤2

Tương tự⇒a,b∈[0;2]⇒a,b∈[0;2]

Ta có:

A=a(a−2)−b≤a(a−2)≤0A=a(a−2)−b≤a(a−2)≤0

Dấu = xảy ra⇔a=b=0⇔a=b=0 hoặc a=2,b=0a=2,b=0

Ta có:

A≥a2−2a+2a3−2=(a−23)2−229≥−229A≥a2−2a+2a3−2=(a−23)2−229≥−229

và A≥a2−2a+2a−4=a2−4≥−4A≥a2−2a+2a−4=a2−4≥−4

Vì A≥−4A≥−4 ko xảy ra dấu = nên A≥−229⇔a=23,b=149

tại sao A\(\ge\)-4 lại Ko xảy ra dấu =vậy bn

1 tháng 5 2017

bài này ko khác gì câu 921427 nhé bạn, có điều bạn tìm cách tách a + 3b + 2c = (a + b) + (b + c) + (b + c)

Thêm nữa, áp dụng BĐT   \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)  với a, b, c > 0

Đẳng thức xảy ra khi và chỉ khi a = b = c.

20 tháng 2 2020

EZ!!!Sau khi sử dụng 1 số bđt đơn giản, ta sẽ được:

\(\text{Σ}_{cyc}\frac{ab}{a+3b+2c}\le\frac{1}{9}\text{Σ}_{cyc}\left(\frac{ab}{a+c}+\frac{ab}{b+c}+\frac{a}{2}\right)=K\)

\(P\le K=\frac{1}{9}\left[\text{Σ}_{cyc}\left(\frac{ab}{a+c}+\frac{bc}{a+c}\right)+\frac{a+b+c}{2}\right]\)

\(=\frac{1}{9}\left(b+a+c+\frac{a+b+c}{2}\right)=\frac{a+b+c}{6}\le1\)

Dấu "=" xảy ra khi và chỉ khi a = b = c = 2

22 tháng 12 2017

Ta có :\(\left(a-b\right)^2\ge0\forall a;b\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow a^2+b^2\ge2ab\)

\(\Leftrightarrow2a^2+2b^2\ge a^2+b^2+2ab\Leftrightarrow2a^2+2b^2\ge\left(a+b\right)^2\)

Suy ra \(\frac{2011}{2a^2+2b^2+2008}\le\frac{2011}{\left(a+b\right)^2+2008}=\frac{2011}{4+2008}=\frac{2011}{2012}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=1\)

28 tháng 6 2017

Phép nhân các phân thức đại số

17 tháng 8 2017

a) ta có : \(2A+3B=0\) \(\Leftrightarrow2.\dfrac{5}{2m+1}+3.\dfrac{4}{2m-1}=0\)

\(\Leftrightarrow\dfrac{10}{2m+1}+\dfrac{12}{2m-1}=0\Leftrightarrow\dfrac{10\left(2m-1\right)+12\left(2m+1\right)}{\left(2m+1\right)\left(2m-1\right)}=0\)

\(\Leftrightarrow\dfrac{20m-10+24m+12}{4m^2-1}=0\Leftrightarrow\dfrac{44m+2}{4m^2-1}=0\)

\(\Leftrightarrow44m+2=0\Leftrightarrow44m=-2\Leftrightarrow m=\dfrac{-2}{44}=\dfrac{-1}{22}\) vậy \(m=\dfrac{-1}{22}\)

b) ta có : \(AB=\dfrac{5}{2m+1}.\dfrac{4}{2m-1}=\dfrac{5.4}{\left(2m+1\right)\left(2m-1\right)}\)

ta có : \(A+B=\dfrac{5}{2m+1}+\dfrac{4}{2m-1}=\dfrac{5\left(2m-1\right)+4\left(2m+1\right)}{\left(2m+1\right)\left(2m-1\right)}\)

\(\Rightarrow AB=A+B\Leftrightarrow\dfrac{5.4}{\left(2m+1\right)\left(2m-1\right)}=\dfrac{5\left(2m-1\right)+4\left(2m+1\right)}{\left(2m+1\right)\left(2m-1\right)}\)

\(\Leftrightarrow5.4=5\left(2m-1\right)+4\left(2m+1\right)\Leftrightarrow20=10m-5+8m+4\)

\(\Leftrightarrow20=18m-1\Leftrightarrow18m=20+1=21\Leftrightarrow m=\dfrac{21}{18}=\dfrac{7}{6}\) vậy \(m=\dfrac{7}{6}\)

23 tháng 10 2020

đéo biết

24 tháng 10 2020

1) \(A=-2x^2-10y^2+4xy+4x+4y+2013=-2\left(x-y-1\right)^2-8\left(y-\frac{1}{2}\right)^2+2017\le2017\forall x,y\inℝ\)Đẳng thức xảy ra khi x = 3/2; y = 1/2

2) \(A=a^4-2a^3+2a^2-2a+2=\left(a^2+1\right)\left(a-1\right)^2+1\ge1\)

Đẳng thức xảy ra khi a = 1

3) \(N=\left(x-y\right)\left(x-2y\right)\left(x-3y\right)\left(x-4y\right)+y^4=\left(x^2-5xy+4y^2\right)\left(x^2-5x+6y^2\right)+y^4=\left(x^2-5xy+4y^2\right)^2+2y^2\left(x^2-5xy+4y^2\right)+y^4=\left(x^2-5xy+5y^2\right)^2\)(là số chính phương, đpcm)

4) \(a^3+b^3=3ab-1\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)-3ab+1=0\Leftrightarrow\left[\left(a+b\right)^3+1\right]-3ab\left(a+b+1\right)=0\)\(\Leftrightarrow\left(a+b+1\right)\left(a^2+2ab+b^2-a-b+1\right)-3ab\left(a+b+1\right)=0\Leftrightarrow\left(a+b+1\right)\left(a^2+b^2-ab-a-b+1\right)=0\)Vì a, b dương nên a + b + 1 > 0 suy ra \(a^2+b^2-ab-a-b+1=0\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2=0\Leftrightarrow a=b=1\)

Do đó \(a^{2018}+b^{2019}=1+1=2\)

5) \(A=n^3+\left(n+1\right)^3+\left(n+2\right)^3=3n\left(n^2+5\right)+9\left(n^2+1\right)⋮9\)(Do số chính phương chia 3 dư 1 hoặc 0)