Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)
\(A=1-\frac{1}{6}=\frac{5}{6}\)
\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{n}-\frac{1}{n+1}\)
\(B=1-\frac{1}{n+1}=\frac{n}{n+1}\)
\(\frac{x}{7}+\frac{1}{14}=\frac{1}{y}\)
\(\frac{x\times2}{14}+\frac{1}{14}=\frac{1}{y}\)
\(\frac{2x+1}{14}=\frac{1}{y}\)
\(\Rightarrow\left(2x+1\right).y=14\)
Ta có: 14=7.2=-7.(-2)
mà 2x+1 là số lẻ
\(\Rightarrow\orbr{\begin{cases}2x+1=7\\y=2\end{cases}}\)
\(\orbr{\begin{cases}2x+1=-7\\y=-2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}2x=6\\y=2\end{cases}}\)
\(\orbr{\begin{cases}2x=-8\\y=-2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=3\\y=2\end{cases}}\)
\(\orbr{\begin{cases}x=-4\\y=-2\end{cases}}\)
\(\frac{x}{-7}=\frac{5}{-35}\)
\(\frac{x.5}{-35}=\frac{5}{-35}\)
=> x . 5 = 5
x = 5 : 5
x = 1
Ta có:
\(\left(x+y+z\right)\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\)
\(=1+\frac{z}{x+y}+1+\frac{x}{y+z}+1+\frac{y}{z+x}=3+\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)\)
\(\Rightarrow x+y+z=\frac{3+\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)}{\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}}=\frac{3+\frac{7}{10}}{\frac{2}{5}}=\frac{37}{4}\)
Ta có :
\(\left(x+y+z\right)\left(\frac{1}{x+y}+\frac{1}{y+x}+\frac{1}{z+x}\right)\)
\(=1+\frac{z}{x+y}+1+\frac{x}{y+z}+1+\frac{y}{z+x}=3+\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)\)
\(\Rightarrow x+y+z=\frac{3+\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)}{\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}}=\frac{3+\frac{7}{10}}{\frac{2}{5}}=\frac{37}{4}\)
Cậu có chắc của lớp 6 không ???
Áp dụng Bất đẳng thức Cauchy-Schwarz dạng Engel , có :
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{\left(1+1+1\right)^2}{x+y+z}=\frac{9}{6}=\frac{3}{2}\)
Đẳng thức xảy ra : \(\Leftrightarrow\frac{1}{x}=\frac{1}{y}=\frac{1}{z}=\frac{1}{2}\)
Xét \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(x+y+z\right)=3+\frac{x}{y}+\frac{y}{x}+\frac{y}{z}+\frac{z}{y}+\frac{x}{z}+\frac{z}{x}\)
Với \(x,y,z\inℕ^∗\)áp dụng bất đẳng thức Cô si \(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}.\frac{y}{x}}=2\),\(\frac{y}{z}+\frac{z}{y}\ge2\sqrt{\frac{y}{z}.\frac{z}{y}}=2\),\(\frac{x}{z}+\frac{z}{x}\ge2\sqrt{\frac{x}{z}.\frac{z}{x}}=2\)
\(\Rightarrow\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(x+y+z\right)\ge3+2+2+2=9\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}=\frac{9}{6}=\frac{3}{2}\left(x+y+z=6theogt\right)\)