\(ChoA=\frac{1}{100}+\frac{1}{101}+...+\frac{1}{199}\)

Chứng minh rằng: 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2019

                                  Giải

\(A=\frac{1}{100}+\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{199}\)

\(\Rightarrow A< \frac{1}{100}+\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\)

\(\Rightarrow A< \frac{100}{100}=1\)

Vậy A < 1 (đpcm)

24 tháng 3 2017

A= 1/100x100+1/101x101+..........+1/199x199

Vì 1/100x100<99x100

     1/101x101<100x101

     ...........

     1/199x199 < 1/198x199

=) A< 1/99x100+1/100x101+...+1/198x199

A<1/99-1/100+1/100-1/101+.....+1/198-199

A<100/19701=0,0050....

Mà 1/100=0,01

=> A<1/100

K đúng nhé

18 tháng 3 2018

Đặt \(S=\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+...+\frac{1}{199\cdot200}\)

\(S=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{199}-\frac{1}{200}\)

\(S=\left(1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)

\(S=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{200}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)

\(S=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

\(S=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)

Ta có đpcm

18 tháng 3 2018

Bạn Trí làm sai rồi!

Đề bài không yêu cầu chứng minh như bạn

4 tháng 6 2019

Bn ko lm thì thôi ik

\(A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{100^2}=\frac{1}{2^2}.\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)\)

\(>\frac{1}{2^2}.\left(1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4.5}+...+\frac{1}{50.51}\right)=\frac{1}{4}.\left(1+\frac{1}{4}+\frac{1}{9}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{50}-\frac{1}{51}\right)\)

\(=\frac{1}{4}.\left(1+\frac{1}{4}+\frac{1}{4}+\frac{1}{9}-\frac{1}{51}\right)>\frac{1}{4}.\left(1+\frac{1}{4}+\frac{1}{4}+\frac{1}{9}-\frac{1}{9}\right)=\frac{1}{4}.\left(1+\frac{1}{4}+\frac{1}{4}\right)=\frac{1}{4}.\frac{3}{2}=\frac{3}{8}\)

\(\Rightarrow A>\frac{3}{8}\left(đpcm\right)\)

27 tháng 4 2020

cảm ơn bạn nhé