Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Web có hơn 600 nghìn câu hỏi mà toàn thấy câu hỏi giống nhau với câu thấy nhiều đến chảy hết nước mắt rồi
\(M=\left(a-\frac{6}{a+1}\right)+\left(2b-\frac{3}{b+1}\right)+\left(3c-\frac{2}{c+1}\right)\)
\(M=\left(a+2b+3c\right)-6\left(\frac{1}{a+1}+\frac{1}{2b+2}+\frac{1}{3c+3}\right)\)
\(M\le6-\frac{6.\left(1+1+1\right)^2}{a+1+2b+2+3c+3}\)
\(M\le6-\frac{6.9}{6+6}=6-\frac{9}{2}=\frac{3}{2}\)
Đẳng thức xảy ra khi \(a=3;b=1;c=\frac{1}{3}\)
\(1-\frac{a}{a+1}\ge\frac{2b}{b+1}+\frac{3c}{c+1}\Leftrightarrow\frac{1}{a+1}\ge\frac{b}{b+1}+\frac{b}{b+1}+\frac{c}{c+1}+\frac{c}{c+1}+\frac{c}{c+1}\ge5\sqrt[5]{\frac{b^2c^3}{\left(b+1\right)^2\left(c+1\right)^3}}\)
Tương tự:
\(\frac{1}{b+1}\ge\frac{a}{a+1}+\frac{b}{b+1}+3.\frac{c}{c+1}\ge5\sqrt[5]{\frac{abc^3}{\left(a+1\right)\left(b+1\right)\left(c+1\right)^3}}\)
\(\Leftrightarrow\frac{1}{\left(b+1\right)^2}\ge25\sqrt[5]{\frac{a^2b^2c^6}{\left(a+1\right)^2\left(b+1\right)^2\left(c+1\right)^6}}\)
\(\frac{1}{c+1}\ge\frac{a}{a+1}+2.\frac{b}{b+1}+2.\frac{c}{c+1}\ge5\sqrt[5]{\frac{ab^2c^2}{\left(a+1\right)\left(b+1\right)^2\left(c+1\right)^2}}\)
\(\Leftrightarrow\frac{1}{\left(c+1\right)^3}\ge125\sqrt[5]{\frac{a^3b^6c^6}{\left(a+1\right)^3\left(b+1\right)^6\left(c+1\right)^6}}\)
Nhân vế với vế:
\(\frac{1}{\left(a+1\right)\left(b+1\right)^2\left(c+1\right)^3}\ge5^6\sqrt[5]{\frac{a^5b^{10}c^{15}}{\left(a+1\right)^5\left(b+1\right)^{10}\left(c+1\right)^{15}}}=\frac{5^6ab^2c^3}{\left(a+1\right)\left(b+1\right)^2\left(c+1\right)^3}\)
\(\Leftrightarrow ab^2c^3\le\frac{1}{5^6}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{5}\)
Đề đúng \(3+\frac{a}{2b}+\frac{2b}{3c}+\frac{3c}{a}\ge a+2b+3c+\frac{1}{a}+\frac{1}{2b}+\frac{1}{3c}\)
Ta thấy:
\(a\cdot2b\cdot3c=1\) nên ta đặt \(a=\frac{y}{x};2b=\frac{z}{y};3c=\frac{x}{z}\)
Khi đó \(VT\ge VP\Leftrightarrow\frac{3xyz+x^3+y^3+z^3}{xyz}\)
\(\ge\frac{x^2y+y^2x+y^2z+z^2y+x^2z+z^2x}{xyz}\)
\(\Leftrightarrow3xyz+x^3+y^3+z^3-x^2y-y^2x-y^2z-z^2y-z^2x-x^2z\ge0\)
\(\Leftrightarrow x\left(x-y\right)\left(x-z\right)+y\left(y-z\right)\left(y-x\right)+z\left(z-x\right)\left(z-y\right)\ge0\)
Đúng theo Bđt Schur
Vậy Bđt đc chứng minh
Bài này ngược dấu hay sao ý:
Ta dự đoán dấu "=" xảy ra tại a = b = c =1
Áp dụng BĐT Cauchy-Schwarz: \(VT=\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\ge\frac{9}{a+2b}\) (1)
Ta có: \(a^2+1\ge2a;2b^2+2\ge4b\Rightarrow a^2+2b^2+3=3c^2+3\ge2\left(a+2b\right)\)
\(\Rightarrow\frac{3c^2+3}{2}\ge a+2b\).Suy ra:\(\frac{9}{a+2b}\ge\frac{18}{3c^2+3}=\frac{6}{c^2+1}\) (2)
Ta sẽ c/m: \(\frac{6}{c^2+1}\ge\frac{3}{c}\).Ta có: \(VT=\frac{6}{c^2+1}=6\left(1-\frac{c^2}{c^2+1}\right)=6-\frac{6c^2}{c^2+1}\ge6-\frac{6c^2}{2c}=6-3c\) (3)
Ta sẽ c/m: \(6-3c\ge\frac{3}{c}\Leftrightarrow3c+\frac{3}{c}\le6\).Mặt khác,theo AM-GM
\(3c+\frac{3}{c}\ge2.\sqrt{3c.\frac{3}{c}}=2.3=6\Rightarrow\) mâu thuẫn?
Bài 2:
Áp dụng Bdt Cauchy-Schwarz dạng engel, ta có
\(VT\ge\frac{\left(a+b+c+d\right)^2}{4\left(ab+ac+ad+bc+bd+cd\right)}\)
Mà theo Bđt cosi
\(\frac{\left(a+b+c+d\right)^2}{4\left(ab+ac+ad+bc+bd+cd\right)}\)
\(=\frac{\left(a+b+c+d\right)^2}{2\left[\left(a+b\right)\left(c+d\right)+\left(a+c\right)\left(b+d\right)+\left(a+d\right)\left(b+c\right)\right]}\ge\frac{2}{3}\)