\(choa,b,c,d>0vàa+b+c+d=1.\)

\(tìmMax:A=\sqrt[3]{2a+b}+\sqr...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2015

dự đoán dấu bằng xảy ra khi 4 số bằng nhau bằng 1/4. Ta áp dụng Côsi vào

\(\sqrt[3]{2a+b}.\sqrt[3]{\frac{3}{4}}.\sqrt[3]{\frac{3}{4}}\le\frac{2a+b+\frac{3}{4}+\frac{3}{4}}{3}\)

Tương tự với mấy cái còn lại. Cộng vô ta sẽ tìm được GTLN.

11 tháng 9 2018

Với 2 số thực x,y>0, ta có:

\(x^3+y^3-x^2y-xy^2=\left(x+y\right)\left(x-y\right)^2\ge0\). Dấu bằng xảy ra \(\Leftrightarrow x=y\).

Do đó: \(x^3+y^3\ge x^2y+xy^2\Leftrightarrow4x^3+4y^3\ge\left(x+y\right)^3\Leftrightarrow x+y\le\sqrt[3]{4x^3+4y^3}\)Áp dụng bđt vừa cm, ta có: \(S=\sqrt[3]{2a+b}+\sqrt[3]{2b+c}+\sqrt[3]{2c+d}+\sqrt[3]{2d+a}\le\sqrt[3]{8a+12b+4c}+\sqrt[3]{8c+12d+4a}\le\sqrt[3]{48a+48b+48c+48d}=\sqrt[3]{48}\)(vì a+b+c+d=1)

Dấu bằng xảy ra\(\Leftrightarrow a=b=c=d=\dfrac{1}{4}\)(vì a+b+c+d=1)

11 tháng 9 2018

Bn ơi 3x3 + 3y3 vào cả 2 vế thì 4x3 + 4y3 > 3x3 + 3y3 + x2y + xy2 k phải là (x + y)3

18 tháng 11 2019

Bài 2:

\(\frac{1}{\sqrt[3]{81}}\cdot P=\frac{1}{\sqrt[3]{9\cdot9\cdot\left(a+2b\right)}}+\frac{1}{\sqrt[3]{9\cdot9\cdot\left(b+2c\right)}}+\frac{1}{\sqrt[3]{9\cdot9\cdot\left(c+2a\right)}}\)

\(\ge\frac{3}{a+2b+9+9}+\frac{3}{b+2c+9+9}+\frac{3}{c+2a+9+9}\ge3\left(\frac{9}{3a+3b+3c+54}\right)=\frac{1}{3}\)

\(\Rightarrow P\ge\sqrt[3]{3}\)

Dấu bằng xẩy ra khi a=b=c=3

18 tháng 11 2019

Bài 1: 

 \(ab+bc+ca=5abc\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=5\)

Theo bđt côsi-shaw ta luôn có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+\frac{1}{k}\ge\frac{25}{x+y+z+t+k}\)(x=y=z=t=k>0 ) (*)

\(\Leftrightarrow\left(x+y+z+t+k\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+\frac{1}{k}\right)\ge25\)

Áp dụng bđt AM-GM ta có:

 \(\hept{\begin{cases}x+y+z+t+k\ge5\sqrt[5]{xyztk}\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+\frac{1}{k}\ge5\sqrt[5]{\frac{1}{xyztk}}\end{cases}}\)

\(\Rightarrow\left(x+y+z+t+k\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+\frac{1}{k}\right)\ge25\)

\(\Rightarrow\)(*) luôn đúng

Từ (*) \(\Rightarrow\frac{1}{25}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+\frac{1}{k}\right)\le\frac{1}{x+y+z+t+k}\)

Ta có: \(P=\frac{1}{2a+2b+c}+\frac{1}{a+2b+2c}+\frac{1}{2a+b+2c}\)

Mà \(\frac{1}{2a+2b+c}=\frac{1}{a+a+b+b+c}\le\frac{1}{25}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\frac{1}{a+2b+2c}=\frac{1}{a+b+b+c+c}\le\frac{1}{25}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\right)\)

\(\frac{1}{2a+b+2c}=\frac{1}{a+a+b+c+c}\le\frac{1}{25}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\right)\)

\(\Rightarrow P\le\frac{1}{25}\left[5.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\right]=1\)

\(\Rightarrow P\le1\left(đpcm\right)\)Dấu"="xảy ra khi a=b=c\(=\frac{3}{5}\)

      

26 tháng 10 2019

Áp dụng BĐT Bunhia- cốp -xki ta có

\(M=\left(\sqrt{a}+\sqrt{b}\right)^2\le\left(1^2+1^2\right)\left(a+b\right)\le2\)

Vậy maxM =2 \(\Leftrightarrow a=b=\frac{1}{2}\)

cộng 4 biểu thức lại ta có:

\(\left(a-2\sqrt{ab}+b\right)+\left(b-2\sqrt{bc}+c\right)+\left(c-2\sqrt{ca}+a\right)+\left(d-2\sqrt{da}+a\right)+a+b+c+d\)

\(=\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2+\left(\sqrt{c}-\sqrt{d}\right)^2+\left(\sqrt{d}-\sqrt{a}\right)^2+a+b+c+d>0\)

g/s 4 biểu thức đó đều âm=>tổng của chúng âm

=>1 trong 4 biểu thức có 1 biểu thức là số dương

11 tháng 8 2020

chỉ có 1 biểu thức là số dương.