Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(\left(a+b\right)\left(\dfrac{a}{b}+\dfrac{b}{a}\right)\)
= \(\dfrac{a}{a}+\dfrac{b}{b}+\dfrac{a}{b}+\dfrac{b}{a}\)
= \(2+\left(\dfrac{a}{b}+\dfrac{b}{a}\right)\)
Áp dụng BĐT cô si cho 2 số ta có
\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}\)
⇔\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\)
⇔\(2+\left(\dfrac{a}{b}+\dfrac{b}{a}\right)\ge4\)
⇔ A ≥4
=> Min A =4
dấu "=" xảy ra khi
\(\dfrac{a}{b}=\dfrac{b}{a}\)
⇔a2=b2
⇔a=b
vậy Min A =4 khi a=b
Ta có \(\dfrac{2}{a-b}\)+\(\dfrac{2}{b-c}\)+\(\dfrac{2}{c-a}\)
= (\(\dfrac{1}{a-b}\)+\(\dfrac{1}{c-a}\))+(\(\dfrac{1}{b-c}\)+\(\dfrac{1}{a-b}\))+(\(\dfrac{1}{c-a}\)+\(\dfrac{1}{b-c}\))
=(\(\dfrac{1}{a-b}\)- \(\dfrac{1}{a-c}\))+(\(\dfrac{1}{b-c}\)- \(\dfrac{1}{b-a}\))+(\(\dfrac{1}{c-a}\) - \(\dfrac{1}{c-b}\))
=\(\dfrac{\left(a-c\right)-\left(a-b\right)}{\left(a-b\right).\left(a-c\right)}\)+\(\dfrac{\left(b-a\right)-\left(b-c\right)}{\left(b-a\right).\left(b-c\right)}\)+\(\dfrac{\left(c-b\right)-\left(c-a\right)}{\left(c-b\right).\left(c-a\right)}\)
= \(\dfrac{a-c-a+b}{\left(a-b\right).\left(a-c\right)}\)+\(\dfrac{b-a-b+c}{\left(b-a\right).\left(b-c\right)}\)+\(\dfrac{c-b-c+a}{\left(c-b\right).\left(c-a\right)}\)
= \(\dfrac{-c+b}{\left(a-b\right).\left(a-c\right)}\)+ \(\dfrac{-a+c}{\left(b-a\right).\left(b-c\right)}\)+\(\dfrac{-b+a}{\left(c-b\right).\left(c-a\right)}\)
= \(\dfrac{b-c}{\left(a-b\right).\left(a-c\right)}\)+\(\dfrac{c-a}{\left(b-a\right).\left(b-c\right)}\)+\(\dfrac{a-b}{\left(c-b\right).\left(c-a\right)}\)
Chúc bạn học tốt.
Từ giả thiết suy ra:
\(\left\{{}\begin{matrix}\dfrac{a}{b-c}=\dfrac{-b}{c-a}+\dfrac{-c}{a-b}=\dfrac{-ab+b^2-c^2+ac}{\left(c-a\right)\left(a-b\right)}\\\dfrac{b}{c-a}=\dfrac{-c}{a-b}+\dfrac{-a}{b-c}=\dfrac{-bc+c^2-a^2+ab}{\left(a-b\right)\left(b-c\right)}\\\dfrac{c}{a-b}=\dfrac{-a}{b-c}+\dfrac{-b}{c-a}=\dfrac{-ac+a^2-b^2+bc}{\left(b-c\right)\left(c-a\right)}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a}{\left(b-c\right)^2}=\dfrac{-ab+b^2-c^2+ac}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\\\dfrac{b}{\left(c-a\right)^2}=\dfrac{-bc+c^2-a^2+ab}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\\\dfrac{c}{\left(a-b\right)^2}=\dfrac{-ac+a^2-b^2+bc}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\end{matrix}\right.\)
Cộng theo vế suy ra đpcm
ab−c−ba−c−cb−a=0=>ab−c−ba−c−cb−a=0
=>ab−c=ba−c+cb−a=b2−ab+ac−c2(c−a)(a−b)=>ab−c=ba−c+cb−a=b2−ab+ac−c2(c−a)(a−b)
Nhân cả 2 vế với 1b−c1b−c ta được
a(b−c)2=b2−ab+ac−c2(a−b)(b−c)(c−a)(1)a(b−c)2=b2−ab+ac−c2(a−b)(b−c)(c−a)(1)
Tương tự ta có:
b(c−a)2=c2−bc+bc−a2(a−b)(b−c)(c−a)(2)b(c−a)2=c2−bc+bc−a2(a−b)(b−c)(c−a)(2)
c(a−b)2=a2−ca+cb−c2(a−b)(b−c)(c−a)(3)c(a−b)2=a2−ca+cb−c2(a−b)(b−c)(c−a)(3)
Cộng theo vế (1);(2);(3) ta có ĐPCM
Lời giải:
Ta có:
\(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\Rightarrow \frac{a}{b-c}=\frac{-b}{c-a}+\frac{-c}{a-b}\)
\(\Leftrightarrow \frac{a}{b-c}=\frac{-b(a-b)-c(c-a)}{(a-b)(c-a)}=\frac{b^2+ca-c^2-ab}{(a-b)(c-a)}\)
\(\Rightarrow \frac{a}{(b-c)^2}=\frac{b^2+ca-c^2-ab}{(a-b)(b-c)(c-a)}\)
Hoàn toàn tương tự:
\(\frac{b}{(c-a)^2}=\frac{c^2+ab-a^2-bc}{(a-b)(b-c)(c-a)}\)
\(\frac{c}{(a-b)^2}=\frac{a^2+bc-b^2-ac}{(a-b)(b-c)(c-a)}\)
Cộng theo vế các đẳng thức vừa thu được ta có:
\(\frac{a}{(b-c)^2}+\frac{b}{(c-a)^2}+\frac{c}{(a-b)^2}=\frac{b^2+ac-c^2-ab+c^2+ab-a^2-bc+a^2+bc-b^2-ac}{(a-b)(b-c)(c-a)}=0\)
Ta có đpcm.
Mấy bài này đăng nhiều rồi bạn ;v
Bài 1: Nhân cả 2 vế cho a+b+c rồi rút gọn được đpcm
Bài 2: Thêm 1 rồi bớt 1 :v (x+y+xy+1-1)
Từ \(\dfrac{a-\left(c-b\right)}{b-c}+\dfrac{b-\left(a-c\right)}{c-a}+\dfrac{c-\left(b-a\right)}{a-b}=3\)
\(=>\dfrac{a}{b-c}+1+\dfrac{b}{c-a}+1+\dfrac{c}{a-b}+1=3\)
\(=>\dfrac{a}{b-c}-\dfrac{b}{a-c}-\dfrac{c}{b-a}=0\)
\(=>\dfrac{a}{b-c}=\dfrac{b}{a-c}+\dfrac{c}{b-a}=\dfrac{b^2-ab+ac-c^2}{\left(c-a\right)\left(a-b\right)}\)
Nhân cả 2 vế với \(\dfrac{1}{b-c}\) ta được
\(\dfrac{a}{\left(b-c\right)^2}=\dfrac{b^2-ab+ac-c^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\left(1\right)\)
Tương tự ta có:
\(\dfrac{b}{\left(c-a\right)^2}=\dfrac{c^2-bc+bc-a^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\left(2\right)\)
\(\dfrac{c}{\left(a-b\right)^2}=\dfrac{a^2-ca+cb-c^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\left(3\right)\)
Cộng theo vế (1);(2);(3) ta có ĐPCM
CHÚC BẠN HỌC TỐT.........
\(\dfrac{a}{b-c}+\dfrac{b}{c-a}+\dfrac{c}{a-b}=0\)
\(\Rightarrow\dfrac{a}{b-c}=\dfrac{b}{a-c}+\dfrac{c}{b-a}=\dfrac{b^2-ab+ac-c^2}{\left(a-b\right)\left(c-a\right)}\)
\(\Leftrightarrow\dfrac{a^2}{\left(b-c\right)^2}=\dfrac{ab^2-a^2b+a^2c-ac^2}{\left(a-b\right)\left(c-a\right)\left(b-c\right)}\)
Tương tự ta có:
\(\dfrac{b^2}{\left(c-a\right)^2}=\dfrac{bc^2-b^2c+b^2a-a^2b}{\left(b-c\right)\left(c-a\right)\left(a-b\right)}\)
\(\dfrac{c^2}{\left(a-b\right)^2}=\dfrac{a^2c-c^2a+c^2b-cb^2}{\left(c-a\right)\left(a-b\right)\left(b-c\right)}\)
Cộng 3 đẳng thức trên có:
==" xl mk ko bt tài làm để có bình phương đc :)) mk chỉ can chứng minh
\(\dfrac{a}{\left(b-c\right)^2}+\dfrac{b}{\left(c-a\right)^2}+\dfrac{c}{\left(a-b\right)^2}=0đcthui\)
Có:\(a+b+c=0\Rightarrow c=-a-b\)
\(\Rightarrow b=-a-c\)
\(\Rightarrow a=-b-c\)
Cho \(B=\dfrac{a-b}{c}+\dfrac{b-c}{a}+\dfrac{c-a}{b}\)
\(1\)\(\Rightarrow B.\dfrac{c}{a-b}=\left(\dfrac{a-b}{c}+\dfrac{b-c}{a}+\dfrac{c-a}{b}\right).\dfrac{c}{a-b}\)
\(\Rightarrow B.\dfrac{c}{a-b}=1+\dfrac{c}{a-b}\left(\dfrac{b-c}{a}+\dfrac{c-a}{b}\right)\)
\(\Rightarrow B.\dfrac{c}{a-b}=1+\dfrac{c}{a-b}.\dfrac{b^2-bc+ac-a^2}{ab}\)
\(\Rightarrow B.\dfrac{c}{a-b}=1+\dfrac{c}{a-b}.\dfrac{\left(a-b\right)\left(c-a-b\right)}{ab}\)
\(\Rightarrow B.\dfrac{c}{a-b}=1+\dfrac{2c^2}{ab}=1+\dfrac{2c^3}{abc}\)
\(2\ B.\dfrac{a}{b-c}=\left(\dfrac{a-b}{c}+\dfrac{b-c}{a}+\dfrac{c-a}{b}\right).\dfrac{a}{b-c}\)
\(\Rightarrow B\dfrac{a}{b-c}=1+\dfrac{a}{b-c}\left(\dfrac{a-b}{c}+\dfrac{c-a}{b}\right)\)
\(\Rightarrow B.\dfrac{a}{b-c}=1+\dfrac{a}{b-c}\left(\dfrac{ab-b^2+c^2-ac}{bc}\right)\)
\(\Rightarrow B.\dfrac{a}{b-c}=1+\left(\dfrac{\left(b-c\right)\left(b+c\right)-a\left(b+c\right)}{bc}\right)\dfrac{a}{b-c}\)
\(\Rightarrow B.\dfrac{a}{b-c}=1+\left(\dfrac{\left(b+c\right)\left(b-c-a\right)}{bc}\right).\dfrac{a}{b-c}\)
\(\Rightarrow B.\dfrac{a}{b-c}=1+\dfrac{2a^3}{abc}\)
\(3\ \)\(B.\dfrac{b}{c-a}=1+\dfrac{2b^3}{abc}\)
\(\Rightarrow A=\left(\dfrac{a-b}{c}+\dfrac{b-c}{a}+\dfrac{c-a}{b}\right)\left(\dfrac{c}{a-b}+\dfrac{a}{b-c}+\dfrac{b}{c-a}\right)\)
\(\Rightarrow\left(B.\dfrac{c}{a-b}\right)+\left(B.\dfrac{a}{b-c}\right)+\left(B.\dfrac{b}{c-a}\right)\)
\(\Rightarrow1+\dfrac{2a^3}{abc}+1+\dfrac{2b^3}{abc}+1+\dfrac{2c^3}{abc}\)
\(\Rightarrow3+\dfrac{2\left(a^3+b^3+c^3\right)}{abc}\)
Áp dụng hằng đẳng thức mở rộng \(a^3+b^3+c^3=3abc\) khi \(a+b+c=0\)
\(\Rightarrow A=9\)
nhailaier you ngáo ak
Cho \(A=a+b+c=0\)
Tính \(A=\left(\dfrac{a-b}{c}+\dfrac{b-c}{a}+\dfrac{c-a}{b}\right)\left(\dfrac{c}{a-b}+\dfrac{a}{b-c}+\dfrac{b}{c-a}\right)\) chắc chắn bằng 0 rồi :V