\(ChoA=3+3^2+3^3+... +3^{100}\).Tìm số tự nhiên n ,biết rằng 2A+3=\(...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2016

Ta có : A = 3 + 32 + 33 + .... + 3100

=> 3A = 32 + 33 + .... + 3101

=> 3A - A = 3101 - 3

=>2A = 3101 - 3

=> 2A + 3 = 3101

Vậy n = 101

4 tháng 9 2016

A=3+32+33+...+3100

3A=32+33+34+...+3101

3A-A=32+33+34+...+3101-(3+32+33+...+3100)

2A=3101-3

\(\Rightarrow\)2A+3=3101

Vậy 2A+3=3101

14 tháng 9 2018

ta có: A = 3 + 3^2 + 3^3 + ....+ 3^100

=> 3A = 3^2 + 3^3 + 3^4 + ...+ 3^101

=> 3A-A = 3^101 - 3

2A = 3^101 - 3

=> 2A + 3 = 3^101

mà 2A + 3 = 3^n

=> n = 101

21 tháng 7 2016

A = 3 + 32 + 33 + ... + 399 + 3100

3A = 32 + 33 + 34 + ... + 3100 + 3101

3A - A = (32 + 33 + 34 + ... + 3100 + 3101) - (3 + 32 + 33 + ...+ 399 + 3101)

2A = 3101 - 3

3n = 2A + 3 = 3101 - 3 + 3 = 3101

n = 101

Chúc bạn học tốt ^^

21 tháng 7 2016

A = 3 + 32 +..... + 3100 
3A = 32 + 33 + .... + 3101 
3A - A = ( 32 + 33 + .... + 3101 ) - ( 3 + 32 +..... + 3100  )
2A = 3101 - 3
2A + 3 = 3n = 3101 
=> n = 101
Chúc bạn học tốt !

 

8 tháng 10 2018

\(A=3+3^2+3^3+...+3^{99}+3^{100}\)

\(3A=3^2+3^3+3^4+...+3^{100}+3^{101}\)

\(3A-A=3^{101}-3\)

\(2A+3=3^{101}\)

Vậy n = 101

17 tháng 3 2020

Ta có : A = 3 + 32+ 3+ .... + 3100   (1) 

          3.A=32 + 33 + 34 + .... +3 101 ( 2 )

Từ ( 1 ) và (2 ) ,ta có :

3.A-A= (32 + 33 + 34 + .... +3 101) - ( 3 + 32+ 3+ .... + 3100

2.A = 3101 - 3

=> A= (3101-3 ) : 2   ( 3 )

Từ ( 3 ) ta có : 2. (3101- 3 ) : 2 + 3 = 3n 

               <=> 3101                         = 3n

               <=> 101                          = n

Vậy n = 101

        

16 tháng 6 2016

\(3B=3^2+3^3+3^4+....+3^{101}\)

\(2B=3^{101}-3\)

\(B=\frac{3^{101}-3}{2}\)

\(=>2B=3^{101}-3\)

\(=>2b+3=3^{101}\)

\(=>n=101\)

A = 3 + 32 + 33 + ..+ 3100 

=> 3A = 32 + 33 + 34 + ..+ 3101 

=> 3A  - A = ( 32 + 33 + 34 + 31101 

=> - ( 3 + 32 + 33 + 3100 ) 

=> 2A = 3101  - 3 

Màk 2A + 3 = 3n 

=> 3101 - 3 + 3 = 3n

=> 3n = 3101 

=> n = 101 

Vậy...

^^ Học tốt! 

25 tháng 6 2017

THỨ MẤY bn???????

25 tháng 10 2017

n=2018 nha

k mk minh noi cach giai cho :)

thx

25 tháng 10 2017

n=2018

tớ đồng ý với tienvu6a3

17 tháng 1 2017

3A=32+33+34+...+32010

3A-A=32010-3

2A=32010-3

=>2A+3=32010

Vậy n=2010

17 tháng 1 2017

A = 3 + 32 + 33 + ... + 32009

3A = 32 + 33 + 34 + ... + 32010

3A - A = (32 + 33 + 34 + ... + 32010) - (3 + 32 + 33 + ... + 32009)

2A = 32010 - 3 

=> 2A + 3 = (32010 - 3) + 3 = 32010 = 3n

=> n = 2010

20 tháng 8 2016

Bài làm

a) Ta có:

\(A=\)\(3+3^2+3^3+...+3^{2009}\)

\(3A=3^2+3^3+3^4+...+3^{2010}\)

\(3A-A=2A=\left(3^2+3^3+3^4+...+3^{2010}\right)-\left(3+3^2+3^3+...+3^{2009}\right)\)

\(2A=3^{2010}-3\)

Từ đó

=> \(2A+3=3^{2010}-3+3=3^{2010}\)

=> n = 2010