Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>4n-2-3 chia hết cho 2n-1
=>\(2n-1\in\left\{1;-1;3;-3\right\}\)
=>\(n\in\left\{1;0;2\right\}\)
b: =>6n-4+11 chia hết cho 3n-2
=>\(3n-2\in\left\{1;-1;11;-11\right\}\)
=>\(n\in\left\{1\right\}\)
a, Ta có:
\(\dfrac{4n-11}{4n-8}\)=\(\dfrac{4n-8-3}{4n-8}=\dfrac{4n-8}{4n-8}+\dfrac{-3}{4n-8}=1+\dfrac{-3}{4n-8}\)
\(\Rightarrow\)-3 \(⋮\) 4n - 8
\(\Rightarrow\)4n-8 \(\in\) Ư (-3) ={\(\pm\)1; \(\pm\)3}
Ta có bảng sau:
4n-8 | -1 | 1 | -3 | 3 |
n | \(\dfrac{7}{4}\) | \(\dfrac{9}{4}\) | \(\dfrac{5}{4}\) | \(\dfrac{11}{4}\) |
Vậy x \(\in\){ \(\varnothing\) }
b, Ta có:
2n + 1 \(⋮\) n + 1
\(\Rightarrow\) 2.(n+1) \(⋮\) n+1
\(\Rightarrow\)2 \(⋮\) n+1
\(\Rightarrow\) n+1 \(\in\) Ư (2) = { -1 ; -2; 1; 2 }
Ta có các trường hợp sau:
n + 1 = -1 \(\Rightarrow\) n= -2
n + 1 = -2 \(\Rightarrow\) n= -3
n + 1 = 1 \(\Rightarrow\) n= 0
n + 1 = 2 \(\Rightarrow\) n= 1
Vậy n \(\in\) { -2;-3;0;1 }
a) Ta có 4n-5=4n-2+3
Do 4n-5 chia hết cho 2n-1 nên 4n-2+3 chia hết cho 2n-1
=> 3 chia hết cho n-1
=> n-1 thuộc Ư(3)={1;3;-1;-3}
=>n={2;4;0;-2}
Do n thuộc N nên n={2;4;0}
các câu còn lại tương tự
tick nha
Nếu $1$ thì:
$A=(2n+20)(4n+8)=(2.1+20)(4.1+8)=264$ không chia hết cho 16 bạn nhé.
Bạn coi lại đề.
a, 3n+2 chia hết n-1
=> 3(n-1)+5 chia hết cho n-1
Mà 3(n-1) chia hết cho n-1
=> 5 chia hết cho n-1
Lại có n thuộc N
=> n-1 thuộc Ư(5)=1,-1,5,-5
=> n=2,0,6,-4
a) 3n+2 chia hết cho n-1
=>3(n-1)+5 chia hết cho n-1 = 5 chia hết cho n-1
=>n-1 thuộc Ư(5)={-1;1;-5;5}
n-1=-1=>n=0 = n-1=1=>n=2
n-1=-5=>n=-4 = n-1=5=>n=6
Có \(A=\left(2n+2\right).\left(4n+8\right)=8.\left(n+1\right).\left(n+2\right)\)
Lại có n + 1 , n + 2 là 2 số tự nhiên liên tiếp
nên (n + 1).(n + 2) \(⋮2\forall n\inℕ\)
\(\Leftrightarrow A=8\left(n+1\right)\left(n+2\right)⋮16\)