Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2+2^2+2^3+...+2^{20}\)
\(A=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{17}+2^{18}+2^{19}+2^{20}\right)\)
\(A=\left(2.1+2.2+2.2^2+2.2^3\right)+\left(2^5.1+2^5.2+2^5.2^2+2^5.2^3\right)+...\left(2^{17}.1+2^{17}.2+2^{17}.2^2+2^{17}.2^3\right)\)
\(A=2.\left(1+2+4+8\right)+2^5.\left(1+2+4+8\right)+...+2^{17}.\left(1+2+4+8\right)\)
\(A=2.15+2^5.15+...+2^{17}.15\)
\(A=15.\left(2+2^5+...+2^{17}\right)\)
Vì 15 chia hết cho 5
=> A chia hết cho 5
A=2.(1+2+4+8)+...2^17(1+2+4+8)
A=2.15+2^5.15+...+2^17.15
A=15.(2+2^5+...+2^17) chia het cho 5
Vay.............
A = 3 + 32 + 33 + .....+ 3100
=> 3A = 32 + 33 + 34 + ....+ 3101
=> 3A-A = ( 32 + 33 + 34 + ....+ 3101) - ( 3 + 32 + 33 + .....+ 3100)
2A = 32 + 33 + 34 + ....+ 3101- 3 - 32 - 33 - .....- 3100
2A = 3101 -3
Ta có : 2A +3 = 3n
=> 3101 -3 +3 = 3n
=> 3101 = 3n
=> n = 101
\(A=3+3^2+3^3+....+3^{100}\)
\(\Rightarrow3A=3^2+3^3+3^4+....+3^{100}+3^{101}\)
\(\Rightarrow3A-A-\left(3^2+3^3+3^4+....+3^{100}+3^{101}\right)-\left(3+3^2+3^3+....+3^{100}\right)\)
\(\Rightarrow2A=3^{101}-3\)
\(\Rightarrow2A+3=3^{101}-3+3=3^{101}\)
Vậy số cần tìm chỉ cần đổi từ số mũ là 101
a)A=4+22+23+...+220
=>2A=23+23+24+...+221
=>2A-A=A=(23+23+24+...+221)-(4+22+23+...+220)
=>A=221
Mà 221=27.214 =128.214 chia hết cho 128
=>A chia hết cho 128.
b) Ta có: 3B=32+33+...+32010
=>3B-B=2B=(32+33+...+32010)-(3+32+...+32009)
=>2B=32010-3
=>2B+3=32010
=>3n = 32010
=>n=2010
A=5+52+53+.....+58
A có 8 số hạng,ghép 2 số thành 1 cặp lần lượt từ trái sang phải,ta có:
A=(5+52)+(53+54)+...+(57+58)
A=30+52.30+...+56.30
A=30.(52+54+...+56) chia hết cho 30
Vậy A là bội của 30
Chúc em học tốt^^
A=2+2^2+...........+2^60
c\m c\h cho 3:2+2^2+....+2^60=2.(1+2)+........+2^59(1+2)
=2.3+.........+2^59.3
=(2+...+2^59).3
=>A chia hết cho 3
cau tiếp tuong tu
3
Ta chứng minh A chia hết cho 3:
A=(2+2^2)+(2^3+2^4)+...+(2^59+2^60)
=2.(1+2)+2^3.(1+2)+...+2^59.(1+2)
=2.3+2^3.3+...+2^59.3
=3.(2+2^3+...+2^59) chia hết cho 3
Ta chứng minh A chia hết cho 7
A=(2+2^2+2^3)+(2^4+2^5+2^6)+...+(2^58+2^59+2^60)
=2.(1+2+4)+2^4.(1+2+4)+...+2^58.(1+2+4)
=2.7+2^4.7+...+2^58.7
=7.(2+2^4+...+2^58) chia hết cho 7
Ta chứng minh A chia hết cho 15
A=(2+2^2+2^3+2^4)+(2^5+2^6+2^7+2^8)+...+(2^57+2^58+2^59+2^60)
=2.(1+2+4+8)+2^5.(1+2+4+8)+....+2^57.(1+2+4+8)
=2.15+2^5.15+..+2^57.15
=15.(2+2^5+...+2^57) chia hết cho 15