K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2018

Đặt A = 1/2+(1/2)2+(1/2)3+...+(1/2)109+(1/2)110

=> 2A = 1 +  1/2+(1/2)2+(1/2)3+...+(1/2)109

=> 2A - A = 1 - \(\frac{1}{2^{110}}\)

=> A = 1 - \(\frac{1}{2^{110}}\)

8 tháng 11 2018

Ta có : \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+.....+\frac{1}{2^{110}}\)

\(\Leftrightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{109}}\)

\(\Leftrightarrow2A-A=1-\frac{1}{2^{110}}\)

\(\Leftrightarrow A=1-\frac{1}{2^{110}}< 1\)

3 tháng 9 2017

Bài 1 : a, Ta có : (-1)3 . (-1)5 . (-1)7  . (-1)9 . (-1)11 . (-1)13

= (-1)(-1).(-1).(-1).(-1).(-1) 

= (-1)6

= 1

b, (1000 - 13) . (1000 - 23) . (1000 - 33) . ... . (1000 - 503)

= (1000 - 13) . (1000 - 23) . (1000 - 33) .... (1000 - 103).......(1000 - 503)

= (1000 - 13) . (1000 - 23) . (1000 - 33) .... 0 ........(1000 - 503)

= 0 

Bài 2 : 

Đặt A = 1+ 2+ 3+ ... + 10= 385

=> 22(1+ 2+ 3+ ... + 102) = 22.385

=> 22 + 42 + 62 + ..... + 202 = 4.385

=> 22 + 42 + 62 + ..... + 202 = 1540

Vậy 22 + 42 + 62 + ..... + 202 = 1540

4 tháng 1 2018

bài 3:

a) 2S=2+22+23+24+...+251

    2S-S=251-1

mà 251-1<251

Suy ra:s<251

16 tháng 5 2018

Giả sử \(S_n\) là số nguyên

ta có: \(S_n=\frac{1^2-1}{1}+\frac{2^2-1}{2^2}+\frac{3^2-1}{3^2}+...+\frac{n^2-1}{n^2}\)

\(S_n=\frac{1^2}{1}-\frac{1}{1}+\frac{2^2}{2^2}-\frac{1}{2^2}+\frac{3^2}{3^2}-\frac{1}{3^2}+...+\frac{n^2}{n^2}-\frac{1}{n^2}\)

\(S_n=0+1-\frac{1}{2^2}+1-\frac{1}{3^2}+...+1-\frac{1}{n^2}\)

\(S_n=\left(1+1+...+1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{n^2}\right)\) ( 1+1+...+1 có ( n-2) :1+1 = n -1 số 1)

để \(S_n\in z\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\in z\)(1)

mà \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{n^2}< \frac{1}{\left(n-1\right).n}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right).n}\)

                                                        \(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}\)

                                                         \(=1-\frac{1}{n}< 1\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< 1\)(*)

mà \(\frac{1}{2^2}>0;\frac{1}{3^2}>0;...;\frac{1}{n^2}>0\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}>0\) (**)

Từ (*);(**) \(\Rightarrow0< \frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< 1\)

               \(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\) không phải là số nguyên

Từ (1) => \(S_n\) không phải là số nguyên ( điều phải chứng minh)

17 tháng 3 2020

haha quá chuẩn

2 tháng 2 2019

mình viết thiếu ở câu b) nhé;thêm CTR A<1

2 tháng 2 2019

Cậu làm bài này chưa 

18 tháng 1 2016

minh cung gap phai cau nay ma kho qua

18 tháng 1 2016

Nguyen Van Thi giai nhu the nao day