Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 102k - 1 = 102k -10k + 10k -1 = 10k ( 10k -1 ) + ( 10k -1 ) Chia hết cho 19
b) 103k -1 = 103k - 10k + 10k -1 =10k ( 102k -1 ) + ( 10k -1 ) Chia hết cho 19
a) Vì \(10^k-1⋮19\Rightarrow10^k-1=19n\left(n\inℕ\right)\)
\(\Rightarrow10^k=19n+1\)
\(\Rightarrow10^{2k}=\left(10^k\right)^2=\left(19n+1\right)^2=361n^2+38n+1\)
\(\Rightarrow10^{2k}-1=361n^2+38n+1-1=361n^2+38n⋮19\)
Vậy.................
b) Ý này bạn làm giống vậy nha
a)\(10^{2k}-1=\left(10^k-1\right)\left(10^k+1\right)\)
Dễ thấy: \(10^k-1⋮19\Rightarrow\left(10^k-1\right)\left(10^k+1\right)⋮19\)
\(\Rightarrow10^{2k}-1⋮19\)
b)\(10^{3k}-1=\left(10^k-1\right)\left(10^k+10^{2k}+1\right)\)
Dễ thấy: \(10^k-1⋮19\Rightarrow\left(10^k-1\right)\left(10^k+10^{2k}+1\right)⋮19\)
\(\Rightarrow10^{3k}-1⋮19\)
Thắng xem mà học tập đây :v
Vì 10k - 1 \(⋮\) 19 => 10k - 1\(\equiv\) 0 (mod 19)
=> 10k \(\equiv\) 1 (mod 19)
a) 10k \(\equiv\) 1 (mod 19)
=> (10k)2 \(\equiv\) 12 (mod 19)
=> 102k \(\equiv\) 1 (mod 19)
=> 102k - 1 \(⋮\) 19
b) 10k \(\equiv\) 1 (mod 19)
=> (10k)3 \(\equiv\) 13 (mod 19)
=> 103k = 1 (mod 19)
=> 103k - 1 \(⋮\) 19
Sai đề không? Với k = 1 thì 102k - 1 = 100 - 1 = 99 không chia hết cho 19
\(10^k\)-1 chia hết cho 19=> \(10^k\) -1 = 19n (n là số tự nhiên)
=>\(10^{k=}19n+1\)=>\(10^{2k}=\left(10^k\right)^2=\left(19n+1\right)^2=\left(19n+1\right).\left(19n+1\right)=361n^2+38n+1\)
=>\(10^{2k}-1=361n^2+38n+1-1=361n^2+38n\)chia hết cho 19 =>\(10^{2k}-1\)chia hết cho 19
102k - 1 = (10k)2 - 12 = (10k - 1)(10k + 1)
Mà 10k - 1 chia hết cho 19
=> 102k-1 chia hết cho 19
102k - 1 = ( 10k2 ) - 12 = ( 10k - 1 ) ( 10k + 1 )
10k - 1 có thể chia hết đc cho 19
nen : 102k - 1 chia het 19
thấy đúng thì cho nhé bn
Điều kiện đúng phải là k là số tự nhiên
a)\(10^k-1⋮19\)
\(\Rightarrow10^k\equiv1\left(mod19\right)\)
\(\Rightarrow10^{2k}\equiv1\left(mod19\right)\)
\(\Rightarrow10^{2k}-1⋮19\)
b) Cách làm tương tự