\(y=x\sin x\). Chứng minh hệ thức :

                                           ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2016

Ta có :

\(y'=\sin x+x\cos x\)

\(y"=\cos x+\cos x-x\sin x=2\cos x-x\sin x\)

Vậy \(xy-2\left(y'-\sin x\right)+xy"=x^2\sin x-2\left(\sin x-x\cos x-\sin x\right)+2x\cos x-x^2\sin x=0\)

5 tháng 5 2016

Ta có \(y'=\frac{\cos\left(\ln x\right)-\sin\left(\ln x\right)}{x}\)

                 \(\Rightarrow y"=\frac{x.\frac{-\sin\left(\ln x\right)-\cos\left(\ln x\right)}{x}-\left[\cos\left(\ln x\right)-\sin\left(\ln x\right)\right]}{x^2}=\frac{-2\cos\left(\ln x\right)}{x^2}\)

Ta có : 

            \(y+xy'+x^2y"=\sin\left(\ln x\right)+\cos\left(\ln x\right)+\cos\left(\ln x\right)-\sin\left(\ln x\right)-2\cos\left(\ln x\right)=0\)

12 tháng 5 2016

Ta có : \(y=\sin\left(\ln x\right)+\cos\left(\ln x\right)\Rightarrow\begin{cases}y'=\frac{1}{x}\cos\left(\ln x\right)-\frac{1}{x}\sin\left(\ln x\right)=\frac{\cos\left(\ln x\right)-\sin\left(\ln x\right)}{x}\\y"=\frac{\left[-\frac{1}{x}\sin\left(\ln x\right)-\frac{1}{x}\cos\left(\ln x\right)\right]x-\left[\cos\left(\ln x\right)-\sin\left(\ln x\right)\right]}{x^2}=\frac{-2\cos\left(\ln x\right)}{x^2}\end{cases}\)

\(\Rightarrow y+xy'+x^2y"=\sin\left(\ln x\right)+\cos\left(\ln x\right)+\cos\left(\ln x\right)-\sin\left(\ln x\right)-2\cos\left(\ln x\right)=0\)

=> Điều cần chứng minh

5 tháng 5 2016

Ta có : \(y'=e^{-\frac{x^2}{2}}+x\left(-x\right)e^{-\frac{x^2}{2}}=e^{-\frac{x^2}{2}}\left(1-x^2\right)\)

           \(xy'=\left(1-x^2\right)xe^{-\frac{x^2}{2}}=\left(1-x^2\right)y\)

5 tháng 5 2016

Ta có : \(y'=\frac{-1-\frac{1}{x}}{\left(1+x+\ln x\right)^2}=-\frac{x+1}{x\left(1+x+\ln x\right)^2}\) 

        \(\Rightarrow xy'=-\frac{x+1}{\left(1+x+\ln x\right)^2}\)    (1)

Lại có \(y\left(y\ln x-1\right)=\frac{-1-x}{\left(1+x+\ln x\right)^2}\)   (2)

Từ (1) và (2) suy ra \(xy'=y\left(y\ln x-1\right)\)

5 tháng 5 2016

ta có y'=\(-e^{-x}.\sin+e^{-x}.cosx\)

y"=\(e^{-x}.sinx-e^{-x}.cosx-e^{-x}.cosx-e^{-x}.sinx=-2e^{-x.cosx}\)

vậy y"+2y'+2y=\(-2e^{-x}.cosx-2e^{-x}.sinx+2e^{-x}.cosx+2e^{-x}.sinx=0\)

TL
1 tháng 12 2019

Chứng minh các biểu thức đã cho không phụ thuộc vào x.

Từ đó suy ra f'(x)=0

a) f(x)=1⇒f′(x)=0f(x)=1⇒f′(x)=0 ;

b) f(x)=1⇒f′(x)=0f(x)=1⇒f′(x)=0 ;

c) f(x)=\(\frac{1}{4}\)(\(\sqrt{2}\)-\(\sqrt{6}\))=>f'(x)=0

d,f(x)=\(\frac{3}{2}\)=>f'(x)=0

NV
19 tháng 6 2019

a/ Trên đoạn xét thuộc cung thứ 4, sinx đồng biến

\(\Rightarrow y_{min}=sin\left(-\frac{\pi}{2}\right)=-1\) ; \(y_{max}=sin\left(-\frac{\pi}{3}\right)=-\frac{\sqrt{3}}{2}\)

b/ Trên đoạn xét thuộc cung phần tư thứ nhất và thứ 4, cosx luôn không âm

\(\Rightarrow y_{min}=cos\left(-\frac{\pi}{2}\right)=cos\left(\frac{\pi}{2}\right)=0\) ; \(y_{max}=cos0=1\)

c/ Trên đoạn xét thuộc cung phần tư thứ tư, sinx đồng biến

\(y_{min}=sin\left(-\frac{\pi}{2}\right)=-1\) ; \(y_{max}=sin0=0\)

d/ Trên đoạn xét thuộc cung phần tư thứ nhất (\(0< \frac{1}{4}< \frac{3}{2}< \frac{\pi}{2}\))

\(\Rightarrow cosx\) nghịch biến

\(y_{min}=y\left(\frac{3}{2}\right)=cos\left(\frac{3}{2}\right)\)

\(y_{max}=y\left(\frac{1}{4}\right)=cos\left(\frac{1}{4}\right)\)