\(|x+m|\)) có 5 cực trị

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

24 tháng 3 2016

- Khi \(m=0\Rightarrow y=x-1\) nên hàm số không có cực trị

- Khi \(m\ne0\Rightarrow y'=3mx^2+6mx-\left(m-1\right)\) 

hàm số không có cực trị khi và chỉ chỉ y' = 0 không có nghiệm hoặc có nghiệm kép

\(\Leftrightarrow\Delta'=9m^2+3m\left(m-1\right)=12m^2-3m\le0\) \(\Leftrightarrow0\le m\)\(\le\frac{1}{4}\)

27 tháng 3 2016

Hàm số có cực đại, cực tiểu \(\Leftrightarrow f'\left(x\right)=3x^2-6x+m^2=0\) có 2 nghiệm phân biệt

\(\Leftrightarrow\Delta'=9-3m^2>0\Leftrightarrow\left|m\right|<\sqrt{3}\)

Thực hiện phép chia \(f\left(x\right)\) cho \(f'\left(x\right)\) ta có :

\(f\left(x\right)=\frac{1}{3}\left(x-1\right)f'\left(x\right)+\frac{2}{3}\left(m^2-3\right)x+\frac{m}{3}+m\)

Với \(\left|m\right|<\sqrt{3}\) thì phương trình \(f'\left(x\right)=0\) có 2 nghiệm \(x_1,x_2\) và hàm số y=f(x) đạt cực trị tại \(x_1,x_2\)

Ta có \(f'\left(x_1\right)=f'\left(x_2\right)=0\) nên :

\(y_1=f\left(x_1\right)=\frac{2}{3}\left(m^2-3\right)x_1+\frac{m^2}{3}+m\)

\(y_2=f\left(x_2\right)=\frac{2}{3}\left(m^2-3\right)x_2+\frac{m^2}{3}+m\)

=> Đường thẳng đi qua cực đại, cực tiểu là \(\left(d\right):y=\frac{2}{3}\left(m^2-3\right)x+\frac{m^2}{3}+m\)

Các điểm cực trị \(A\left(x_1,y_1\right);B\left(x_2,y_2\right)\) đối xứng nhau qua \(\left(\Delta\right):y=\frac{1}{2}x-\frac{5}{2}\)

\(\Leftrightarrow\left(d\right)\perp\left(\Delta\right)\) tại trung điểm I của AB (*)

Ta có \(x_1=\frac{x_1+x_2}{2}=1\) suy ra từ (*) \(\Leftrightarrow\begin{cases}\frac{2}{3}\left(m^2-3\right)\frac{1}{2}=-1\\\frac{2}{3}\left(m^2-3\right).1+\frac{m^2}{3}+m=\frac{1}{2}.1-\frac{5}{2}\end{cases}\)

                                                        \(\Leftrightarrow\begin{cases}m=0\\m\left(m+1\right)=0\end{cases}\)

                                                        \(\Leftrightarrow m=0\)

 

NV
4 tháng 5 2019

\(y'=\frac{5\left(x^2+4\right)-2x.5x}{\left(x^2+4\right)}f'\left(\frac{5x}{x^2+4}\right)=\frac{5\left(4-x^2\right)}{x^2+4}f'\left(\frac{5x}{x^2+4}\right)\)

\(=\frac{5\left(2-x\right)\left(2+x\right)}{\left(x^2+4\right)}.\left(\frac{5x}{x^2+4}\right)^2.\left(\frac{5x}{x^2+4}-1\right)\left(\frac{65x}{x^2+4}-15\right)^3\)

\(=\frac{5\left(2-x\right)\left(2+x\right).25x^2\left(x-4\right)\left(1-x\right)\left(x-3\right)^3\left(4-3x\right)^3.5^3}{\left(x^2+4\right)^7}\)

Ta thấy \(y'=0\) có 7 nghiệm nhưng nghiệm \(x=0\) có mũ chẵn nên hàm số có 6 điểm cực trị

27 tháng 3 2016

Hàm số có cực đại, cực tiểu khi m<2. Tọa độ các điểm cực trị là :

\(A\left(0;m^2-5m+5\right);B\left(\sqrt{2-m};1-m\right);C\left(-\sqrt{2-m};1-m\right)\)

23 tháng 4 2016

Ta có : \(y'=3x^2-6x+m^2\Rightarrow y'=0\Leftrightarrow3x^2-6x+m^2=0\left(1\right)\)

Hàm số có cực trị \(\Leftrightarrow\left(1\right)\) có 2 nghiệm phân biệt \(x_1;x_2\)

                           \(\Leftrightarrow\Delta'=3\left(3-m^2\right)>0\Leftrightarrow-\sqrt{3}< m< \sqrt{3}\)

Phương trình đường thẳng d' đi qua các điểm cực trị là : \(y=\left(\frac{2}{3}m^2-2\right)x+\frac{1}{3}m^2\)

=> Các điểm cực trị là :

\(A\left(x_1;\left(\frac{2}{3}m^2-2\right)x_1+\frac{1}{3}m^2+3m\right);B\left(x_2;\left(\frac{2}{3}m^2-2\right)x_2+\frac{1}{3}m^2+3m\right);\)

Gọi I là giao điểm của hai đường thẳng d và d' :

\(\Rightarrow I\left(\frac{2m^2+6m+15}{15-4m^2};\frac{11m^2+3m-30}{15-4m^2}\right)\)

A và B đối xứng đi qua d thì trước hết \(d\perp d'\Leftrightarrow\frac{2}{3}m^2-2=-2\Leftrightarrow m=0\)

Khi đó \(I\left(1;-2\right);A\left(x_1;-2x_1\right);B\left(x_2;-2x_2\right)\Rightarrow I\) là trung điểm của AB=> A và B đối xứng nhau qua d

Vậy m = 0 là giá trị cần tìm

21 tháng 4 2017

Lời giải + diễn giải

để hàm có cực trị f'(x) phải có nghiệm và đổi dấu qua nghiệm

a) \(y'=3x^2-6x+m\)

xét f(x)= 3x^2 -6x+m

để f(x) là hàm bậc 2 => có nghiệm và đổi dấu qua nghiệm đk cần và đủ \(\Delta>0\)

\(\Leftrightarrow\Delta'=9-3m>0\Rightarrow m< 3\)

Kết luận với m< 3 hàm A(x) luôn có cực trị

b)

\(y'=3x^2+4mx+m\)

\(\Delta'=4m^2-3m>0\Leftrightarrow\left[{}\begin{matrix}m< 0\\m>\dfrac{3}{4}\end{matrix}\right.\)

c)

\(y=\dfrac{x^2-2mx+5}{x-m}\Rightarrow\left\{{}\begin{matrix}x\ne m\\y=\left(x-m\right)+\dfrac{5-m^2}{x-m}\end{matrix}\right.\)

\(y'=1+\dfrac{m^2-5}{\left(x-m\right)^2}\)

\(y'=0\Leftrightarrow\left(x-m\right)^2+m^2-5=0\Rightarrow5-m^2>0\Rightarrow-\sqrt{5}< m< \sqrt{5}\)

23 tháng 4 2016

\(f'\left(x\right)=6\left(x^2+\left(m-1\right)x+m\left(1-2m\right)\right)\)

\(f'\left(x\right)=0\Leftrightarrow g\left(x\right)=x^2+\left(m-1\right)x+m\left(1-2m\right)=0\)

Hàm số có cực đại, cực tiểu <=> \(f'\left(x\right)=0\) hay \(g\left(x\right)=0\) có 2 nghiệm phân biệt                                          \(\Leftrightarrow\Delta_g=\left(m-1\right)^2-4m\left(1-2m\right)=\left(3m-1\right)^2>0\Leftrightarrow m\ne\frac{1}{3}\)

Ta có \(f\left(x\right)=g\left(x\right)\left[2x+\left(m+1\right)\right]-\left(3m-1\right)^2x+m\left(m-1\right)\left(1-2m\right)\)

Với \(m\ne\frac{1}{3}\) thì \(g\left(x\right)=0\) có 2 nghiệm phân biệt \(x_1;x_2\) và hàm số đạt cực trị tại  \(x_1;x_2\)  

do \(\begin{cases}g\left(x_1\right)=0\\g\left(x_2\right)=0\end{cases}\) suy ra đường thẳng qua cực đại, cực tiểu là 

\(\Delta:y=-\left(3m-1\right)^2x+m\left(m-1\right)\left(1-2m\right)\)

Ta có cực địa, cực tiểu nằm trên đường thẳng \(y=-4x\)

\(\Leftrightarrow\begin{cases}-\left(3m-1\right)^2=-4\\m\left(m-1\right)\left(1-2m\right)=0\end{cases}\)\(\Leftrightarrow\begin{cases}\left|3m-1\right|=2\\m\in\left\{0;1;\frac{1}{2}\right\}\end{cases}\) \(\Leftrightarrow m=1\)

24 tháng 3 2016

\(f'\left(x\right)=6\left[x^2+\left(m-1\right)x+\left(m-2\right)\right]=0\) 

\(\Leftrightarrow g\left(x\right)=x^2+\left(m-1\right)x+\left(m-2\right)=0\)

Hàm số có cực đại và cực tiểu 

\(\Leftrightarrow g\left(x\right)=0\) có 2 nghiệm phân biệt \(\Leftrightarrow\Delta_g=\left(m-3\right)^2>0\)

                                                        \(\Leftrightarrow m\ne3\)

Thực hiện phép chia \(f\left(x\right)\) cho \(g\left(x\right)\) ta có 2 nghiệm phân biệt \(x_1,x_2\) và hàm số \(y=f\left(x\right)\) đạt cực trị tai \(x_1,x_2\)

Ta có : \(g\left(x_1\right)=g\left(x_2\right)=0\) nên suy ra :

\(y_1=f\left(x_1\right)=-\left(m-3\right)^2x_1-\left(m^2-3m+3\right)\)

\(y_1=f\left(x_2\right)=-\left(m-3\right)^2x_2-\left(m^2-3m+3\right)\)

=> Đường thẳng đi qua cực đại và cực tiểu là \(\left(\Delta\right)\) : \(y=-\left(m-3\right)^2x-\left(m^2-3m+3\right)\)

Ta có  \(\left(\Delta\right)\)  song song với đường thẳng \(y=ax+b\)

\(\Leftrightarrow\begin{cases}m\ne3\\-\left(m-3\right)^2=a\end{cases}\) \(\Leftrightarrow\begin{cases}m\ne3;a<0\\\left(m-3\right)^2=-a\end{cases}\) \(\Leftrightarrow\begin{cases}a<0\\m=\pm\sqrt{a}\end{cases}\)

Vậy : Nếu a<0 thì \(m=3\pm\sqrt{-a}\)

         Nếu \(a\ge0\) thì không tồn tại m thỏa mãn