K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2017

1, A= y^3(1-y)^2 = 4/9 . y^3 . 9/4 (1-y)^2

= 4/9 .y.y.y . (3/2-3/2.y)^2

=4/9 .y.y.y (3/2-3/2.y)(3/2-3/2.y)

<= 4/9 (y+y+y+3/2-3/2.y+3/2-3/2.y)^5

=4/9 . 243/3125

=108/3125

Đến đó tự giải

2 tháng 7 2017


Thử sức với bài 1 xem thế nào :vv
x>0 => 0<x<=1 
f(x)=x^2(1-x)^3
Xét f'(x) = -(x-1)^2x(5x-2) 
Xét f'(x)=0 -> nhận x=2/5 và x=1thỏa mãn đk trên .
 Thử x=1 và x=2/5 nhận x=2/5 hàm số Max tại ddk 0<x<=1 (vậy x=1 loại)
P/s: HS cấp II hong nên làm cách này nhé em :vv 
 

Cho mình hỏi xem cách làm này của mình có đúng không nhé.Đề bài: Tìm nghiệm nguyên dương của phương trình (x+y)4 = 40y+1 Bài giải:Đặt x+y=n với n>0 và n là số nguyên. Phương trình đã cho tương đương với: n4=40y+1.Vì x+y>y nên n>y.- Nếu n=1 thì y=0 (thỏa mãn n>y) =>(x+y)4=1 mà y=0 => x=1 (vì x>0)- Nếu n=2 thì 40y=15 => y=2,(6) là số hữu tỉ (loại)- Nếu n=3 thì y=2 (thỏa mãn n>y) => (x+y)4=81 => x=1 (vì...
Đọc tiếp

Cho mình hỏi xem cách làm này của mình có đúng không nhé.

Đề bài: Tìm nghiệm nguyên dương của phương trình (x+y)= 40y+1 

Bài giải:

Đặt x+y=n với n>0 và n là số nguyên. Phương trình đã cho tương đương với: n4=40y+1.Vì x+y>y nên n>y.

- Nếu n=1 thì y=0 (thỏa mãn n>y) =>(x+y)4=1 mà y=0 => x=1 (vì x>0)

- Nếu n=2 thì 40y=15 => y=2,(6) là số hữu tỉ (loại)

- Nếu n=3 thì y=2 (thỏa mãn n>y) => (x+y)4=81 => x=1 (vì x>0)

- Nếu n=4 thì 40y=255 => y=6,375 là số hữu tỉ và n<y (loại)

- Nếu n=5 thì 40y=624 => y=15,6 là số hữu tỉ và n<y (loại)

- Nếu n=6 thì 40y=1295 => y=32,375 là số hữu tỉ và n<y (loại)

- Nếu n=7 thì y=60 (loại vì n<y).

Vì n,y là 2 số nguyên dương nên từ phần trên suy ra n>7 thì không có giá trị nào của y thỏa mãn.

Vậy phương trình có 2 cặp nghiệm nguyên (x;y) là: (1;0) ; (1;2).

0
15 tháng 9 2017

Áp dụng bất đẳng thức: x2 + a2y2 \(\ge\)2axy, ta có:

\(\frac{1+\sqrt{5}}{2}\left(xy+yz+zx\right)\le\frac{\frac{1+\sqrt{5}}{2}\left(x^2+y^2\right)+\left[y^2+\left(\frac{1+\sqrt{5}}{2}\right)^2x^2\right]+\left[\left(\frac{1+\sqrt{5}}{2}\right)^2z^2+x^2\right]}{2}\)=

\(\frac{\left(\frac{1+\sqrt{5}}{2}+1\right)\left(x^2+y^2\right)+2\left(\frac{1+\sqrt{5}}{2}\right)^2z^2}{2}\)

15 tháng 9 2017

\(\Rightarrow\left(1+\sqrt{5}\right)\le\frac{3+\sqrt{5}}{2}\left(x^2+y^2\right)+\left(3+\sqrt{5}\right)z^2\)\(\Rightarrow x^2+y^2-2z^2\ge\sqrt{5}-1\)\(\Rightarrow P\ge\sqrt{5}-1\)

Vậy GTNN của P là \(\sqrt{5}-1\)khi \(x=y=\frac{1+\sqrt{5}}{2}z.\)

22 tháng 4 2017

Bài 1 : x = 0 ; y = 2

Bài 2 Max A = 1 <=> x = 0 , y = 1 hoặc x = 1 , y = 0

Min A = 0,5 <=> x = y = 0,5

Cho mình hỏi xem cách làm này của mình có đúng không nhé.Đề bài: Tìm nghiệm nguyên dương của phương trình (x+y)4 = 40y+1 Bài giải:Đặt x+y=n với n>0 và n là số nguyên. Phương trình đã cho tương đương với: n4=40y+1.Vì x+y>y nên n>y.- Nếu n=1 thì y=0 (thỏa mãn n>y) =>(x+y)4=1 mà y=0 => x=1 (vì x>0)- Nếu n=2 thì 40y=15 => y=2,(6) là số hữu tỉ (loại)- Nếu n=3 thì y=2 (thỏa mãn n>y) => (x+y)4=81 => x=1 (vì...
Đọc tiếp

Cho mình hỏi xem cách làm này của mình có đúng không nhé.

Đề bài: Tìm nghiệm nguyên dương của phương trình (x+y)= 40y+1 

Bài giải:

Đặt x+y=n với n>0 và n là số nguyên. Phương trình đã cho tương đương với: n4=40y+1.Vì x+y>y nên n>y.

- Nếu n=1 thì y=0 (thỏa mãn n>y) =>(x+y)4=1 mà y=0 => x=1 (vì x>0)

- Nếu n=2 thì 40y=15 => y=2,(6) là số hữu tỉ (loại)

- Nếu n=3 thì y=2 (thỏa mãn n>y) => (x+y)4=81 => x=1 (vì x>0)

- Nếu n=4 thì 40y=255 => y=6,375 là số hữu tỉ và n<y (loại)

- Nếu n=5 thì 40y=624 => y=15,6 là số hữu tỉ và n<y (loại)

- Nếu n=6 thì 40y=1295 => y=32,375 là số hữu tỉ và n<y (loại)

- Nếu n=7 thì y=60 (loại vì n<y).

Vì n,y là 2 số nguyên dương nên từ phần trên suy ra n>7 thì không có giá trị nào của y thỏa mãn.

Vậy phương trình có 2 cặp nghiệm nguyên (x;y) là: (1;0) ; (1;2).

1
29 tháng 6 2016

bai ban giai dung roi do

16 tháng 5 2019

Ta có \(x^2+y^2\ge2xy\)=>\(xy\le\frac{1}{2}\)

\(\frac{1}{A}=\frac{1}{-2xy}-\frac{1}{2}\le-1-\frac{1}{2}=-\frac{3}{2}\)

=> \(A\ge-\frac{2}{3}\)

\(MinA=-\frac{2}{3}\)khi \(x=y=\frac{\sqrt{2}}{2}\)

16 tháng 5 2019

Trần Phúc Khang: bài này cần gì phải làm phức tạp vậy a

c/m: \(xy\le\frac{1}{2}\)( như bài Trần Phúc Khang)

Dấu "=" xảy ra <=> x=y=\(\frac{1}{\sqrt{2}}\)

\(A=\frac{-2xy}{1+xy}\ge\frac{-2.\frac{1}{2}}{1+\frac{1}{2}}=-\frac{1}{\frac{3}{2}}=-\frac{2}{3}\)

Dấu "=" xảy ra <=> x=y=\(\frac{1}{\sqrt{2}}\)

KL:.............................