K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2016

Ta có \(y'=2e^{2x}\sin5x+5e^{2x}\cos5x\)

          \(y"=4e^{2x}\sin5x+10e^{2x}\cos5x+10e^{2x}\cos5x-25e^{2x}\sin5x\)

               \(=-21e^{2x}\sin5x+20e^{2x}\cos5x\)

Vậy \(y"-4y'+29=-21e^{2x}\sin5x+20e^{2x}\cos5x-8e^{2x}\cos5x+29e^{2x}\sin5x=0\)

NV
4 tháng 5 2020

3.

\(f\left(x+\frac{\pi}{3}\right)=cos\left(x+\frac{\pi}{3}\right)\Rightarrow f'\left(x+\frac{\pi}{3}\right)=-sin\left(x+\frac{\pi}{3}\right)\)

\(f'\left(x-\frac{\pi}{6}\right)=-sin\left(x-\frac{\pi}{6}\right)\)

\(f'\left(0\right)=-sin\left(0\right)=0\)

\(2f'\left(x+\frac{\pi}{3}\right).f'\left(x-\frac{\pi}{6}\right)=2sin\left(x+\frac{\pi}{3}\right)sin\left(x-\frac{\pi}{6}\right)\)

\(=cos\left(\frac{\pi}{2}\right)-cos\left(2x+\frac{\pi}{6}\right)=-cos\left(2x+\frac{\pi}{6}\right)\)

\(f'\left(0\right)-f\left(2x+\frac{\pi}{6}\right)=0-cos\left(2x+\frac{\pi}{6}\right)=-cos\left(2x+\frac{\pi}{6}\right)\)

\(\Rightarrow2f'\left(x+\frac{\pi}{3}\right)f'\left(x-\frac{\pi}{6}\right)=f'\left(0\right)-f\left(2x+\frac{\pi}{6}\right)\) (đpcm)

4.

\(y=3\left(sin^4x+cos^4x\right)-2\left(sin^6x+cos^6x\right)\)

\(=3\left(sin^2x+cos^2x\right)^2-6sin^2x.cos^2x-2\left(sin^2x+cos^2x\right)^3+6sin^2x.cos^2x\left(sin^2x+cos^2x\right)\)

\(=3-2=1\)

\(\Rightarrow y'=0\) ; \(\forall x\)

5.

\(y=\left(\frac{sinx}{1+cosx}\right)^3=\left(\frac{sinx\left(1-cosx\right)}{1-cos^2x}\right)^3=\left(\frac{sinx\left(1-cosx\right)}{sin^2x}\right)^3=\left(\frac{1-cosx}{sinx}\right)^3\)

\(y'=3\left(\frac{1-cosx}{sinx}\right)^2\left(\frac{sin^2x-cosx\left(1-cosx\right)}{sin^2x}\right)=3\left(\frac{1-cosx}{sinx}\right)^2\left(\frac{1-cosx}{sin^2x}\right)=\frac{3\left(1-cosx\right)^3}{sin^4x}\)

\(\Rightarrow y'.sinx-3y=\frac{3\left(1-cosx\right)^3}{sin^3x}-3\left(\frac{1-cosx}{sinx}\right)^3=0\) (đpcm)

5 tháng 5 2016

ta có y'=\(-e^{-x}.\sin+e^{-x}.cosx\)

y"=\(e^{-x}.sinx-e^{-x}.cosx-e^{-x}.cosx-e^{-x}.sinx=-2e^{-x.cosx}\)

vậy y"+2y'+2y=\(-2e^{-x}.cosx-2e^{-x}.sinx+2e^{-x}.cosx+2e^{-x}.sinx=0\)

17 tháng 2 2017

+ sin 2x (x + kπ) = sin (2x + k2π) = sin 2x, (k ∈ Z)

(Do hàm số y = sin x có chu kì 2π).

⇒ Hàm số y = sin 2x tuần hoàn với chu kì π.

+ Hàm số y = sin 2x là hàm số tuần hoàn với chu kì π và là hàm số lẻ.

Bảng biến thiên hàm số y = sin 2x trên [-π/2; π/2]

Giải bài 4 trang 17 sgk Đại số 11 | Để học tốt Toán 11

Đồ thị:

Giải bài 4 trang 17 sgk Đại số 11 | Để học tốt Toán 11

Đồ thị hàm số y = sin 2x.

5 tháng 6 2017

sin^2x.sin^2x+cos^2x.cos^2x=1-1/2sin^2(2x)

<=>(1-cos2x)^2/4+(1+cos2x)^2/4=1-1/2sin^2(2x)

<=>(cos^2(2x)+1)/2=1-1/2sin^2(2x)

cos^2(2x)+1=2- sin^2(2x)

cos^2(2x)+sin^2(2x)=1( luôn đúng)

đpcm

5 tháng 5 2016

Ta có \(y'=\frac{\cos\left(\ln x\right)-\sin\left(\ln x\right)}{x}\)

                 \(\Rightarrow y"=\frac{x.\frac{-\sin\left(\ln x\right)-\cos\left(\ln x\right)}{x}-\left[\cos\left(\ln x\right)-\sin\left(\ln x\right)\right]}{x^2}=\frac{-2\cos\left(\ln x\right)}{x^2}\)

Ta có : 

            \(y+xy'+x^2y"=\sin\left(\ln x\right)+\cos\left(\ln x\right)+\cos\left(\ln x\right)-\sin\left(\ln x\right)-2\cos\left(\ln x\right)=0\)

5 tháng 5 2016

Ta có :

\(y'=\sin x+x\cos x\)

\(y"=\cos x+\cos x-x\sin x=2\cos x-x\sin x\)

Vậy \(xy-2\left(y'-\sin x\right)+xy"=x^2\sin x-2\left(\sin x-x\cos x-\sin x\right)+2x\cos x-x^2\sin x=0\)