Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y'=3x^2-2\left(2m-1\right)x+2-m\)
Hàm có các cực trị dương khi pt \(y'=0\) có 2 nghiệm dương phân biệt
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=\left(2m-1\right)^2-3\left(2-m\right)>0\\x_1+x_2=\dfrac{2\left(2m-1\right)}{3}>0\\x_1x_2=\dfrac{2-m}{3}>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4m^2-m-5>0\\m>\dfrac{1}{2}\\m< 2\end{matrix}\right.\) \(\Rightarrow\dfrac{5}{4}< m< 2\)
tưởng tượng đi hàm số đó có đạo hàm =0 lúc x= -2,-1,0
nghĩa là tìm x sao cho x^2-2X=-2,-1,0
=> giải 3 pt => có 3 nghiệm x => có 3 cực trị
ban co thể nói rỏ hơn được không để mình muốn vận dụng cho những bài biến tấu khác .. tks bạn nhiều
y' =2(x-1) f'(x2 -2x)
y'=0 <=> x-1=0
x2 -2x = -2
x2 -2x = -1
x2 -2x =0
Nghiệm của y'=0 là 0, 1, 2 . Vậy có 3 cực trị
- Với \(x< 3\Rightarrow f'\left(x\right)=6x^2-6\left(m+1\right)x+6m=6\left(x-1\right)\left(x-m\right)\)
\(f'\left(x\right)=0\Rightarrow6\left(x-1\right)\left(x-m\right)=0\left(1\right)\Rightarrow\left[{}\begin{matrix}x=1\\x=m\end{matrix}\right.\) có tối đa 2 cực trị khi \(x< 3\)
- Với \(x>3\Rightarrow f'\left(x\right)=n\) là hằng số \(\Rightarrow f\left(x\right)\) ko có cực trị khi \(x>3\)
\(\Rightarrow\) Hàm có đúng 3 điểm cực trị khi và chỉ khi nó đồng thời thỏa mãn:
ĐK1: \(f'\left(x\right)=0\) có 2 nghiệm pb khi \(x< 3\Rightarrow\left\{{}\begin{matrix}m< 3\\m\ne1\end{matrix}\right.\)
ĐK2: \(x=3\) là 1 cực trị của hàm số
\(\Rightarrow f\left(x\right)\) liên tục tại \(x=3\) đồng thời đạo hàm đổi dấu khi đi qua \(x=3\)
\(\lim\limits_{x\rightarrow3^+}f\left(x\right)=\lim\limits_{x\rightarrow3^-}f\left(x\right)\Leftrightarrow3n+46=25-9m\Rightarrow n=-3m-7\) (2)
Mặt khác do 2 nghiệm của (1) đều nhỏ hơn 3 \(\Rightarrow\) tại lân cận trái của \(x=3\) đạo hàm luôn có dấu dương
\(\Rightarrow\) Để đạo hàm đổi dấu khi đi qua \(x=3\) thì \(f'\left(3^+\right)=n< 0\)
Thế vào (2) \(\Rightarrow-3m-7< 0\Rightarrow m>-\dfrac{7}{3}\)
\(\Rightarrow-\dfrac{7}{3}< m< 3\Rightarrow\sum m=0\)
Hàm \(f\left(\left|x\right|\right)\) có 5 điểm cực trị khi \(f\left(x\right)\) có 2 cực trị dương
\(\Rightarrow f'\left(x\right)=3x^2-4x+2-m=0\) có 2 nghiệm dương phân biệt
\(\Rightarrow\left\{{}\begin{matrix}\Delta'=4-3\left(2-m\right)>0\\x_1+x_2=\dfrac{4}{3}>0\\x_1x_2=\dfrac{2-m}{3}>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>\dfrac{2}{3}\\m< 2\end{matrix}\right.\) \(\Rightarrow\dfrac{2}{3}< m< 2\)