\(y^2+x^2=1\)

.Tính giá trị của biểu thức\(-4y^2+3y^...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2018

\(\left|2x+1\right|+\left|x+y-\frac{1}{2}\right|\le0\)

Nhận thấy:  \(\left|2x+1\right|\ge0\);     \(\left|x+y-\frac{1}{2}\right|\ge0\)

=>   \(\left|2x+1\right|+\left|x+y-\frac{1}{2}\right|\ge0\)

Dấu "=" xảy ra  <=>  \(\hept{\begin{cases}2x+1=0\\x+y-\frac{1}{2}=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=-\frac{1}{2}\\y=1\end{cases}}\)

đến đây bạn thay x,y tìm đc vào A để tính nhé

5 tháng 4 2018

a/b=2 => a=2b thay vào D tính

22 tháng 12 2018

\(x^2-4x+1=0\)

( a = 1 ; b = -4 ; c =1 )

\(\Delta=b^2-4ac\) 

\(=\left(-4\right)^2-4.1.1\)

\(=16-4\)

\(=12>0\)

\(\sqrt{\Delta}=\sqrt{12}=2\sqrt{3}\)

Vì \(\Delta>0\) nên phương trình có 2 nghiệm phân biệt 

\(x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{4+2\sqrt{3}}{2.1}=2+\sqrt{3}\)

\(x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{4-2\sqrt{3}}{2.1}=2-\sqrt{3}\)

Ta có : \(G=\frac{x^2}{x^4+1}\) 

. Thay \(x_1\) vào ta được : \(G=\frac{\left(2+\sqrt{3}\right)^2}{\left(2+\sqrt{3}\right)^4+1}\)

 \(=\frac{4+4\sqrt{3}+3}{\left(4+4\sqrt{3}+3\right)^2+1}\)

\(=\frac{4\sqrt{3}+7}{\left(4\sqrt{3}+7\right)^2+1}\)

\(=\frac{4\sqrt{3}+7}{48+56\sqrt{3}+49+1}\)

\(=\frac{4\sqrt{3}+7}{56\sqrt{3}+98}\)

\(=\frac{4\sqrt{3}+7}{14.\left(4\sqrt{3}+7\right)}\)

\(=\frac{1}{14}\)

.Thay \(x_2\) vào ta được : \(G=\frac{\left(2-\sqrt{3}\right)^2}{\left(2-\sqrt{3}\right)^4+1}\)

\(=\frac{4-4\sqrt{3}+3}{\left(4-4\sqrt{3}+3\right)^2+1}\)

\(=\frac{7-4\sqrt{3}}{\left(7-4\sqrt{3}\right)^2+1}\)

\(=\frac{7-4\sqrt{3}}{49-56\sqrt{3}+48+1}\)

\(=\frac{7-4\sqrt{3}}{98-56\sqrt{3}}\)

\(=\frac{7-4\sqrt{3}}{14.\left(7-4\sqrt{3}\right)}=\frac{1}{14}\)

Vậy giá trị của biểu thức là 1/14 

16 tháng 4 2019

C=-104

C=x2+4x-100=(x2+4x+4)-104=(x+2)2-104\(\ge\)-104

Dấu "="xảy ra khi x+2=0=>x=-2

24 tháng 3 2017

Từ \(\dfrac{x}{y}=\dfrac{10}{3}=>\dfrac{x}{10}=\dfrac{y}{3}\)

Đặt \(\dfrac{x}{10}=\dfrac{y}{3}=k\)=>\(\left\{{}\begin{matrix}x=10.k\\y=3.k\end{matrix}\right.\)(1)

Thay (1) vào biểu thức :

\(\dfrac{3.10.k-2.3.k}{10.k-3.3.k}=\dfrac{30.k-6.k}{10.k-9.k}=\dfrac{k.\left(30-6\right)}{k.\left(10-9\right)}=\dfrac{k.24}{k}=24\)

TK mình nhéhaha

24 tháng 3 2017

Ta có:

\(\dfrac{x}{y}=\dfrac{10}{3}\)

\(\Rightarrow\dfrac{x}{10}=\dfrac{y}{3}\)

Đặt \(\dfrac{x}{10}=\dfrac{y}{3}=k\)

=> x=10k; y=3k

Ta có biểu thức

\(\dfrac{3x-2y}{x-3y}\)

Thay x=10k; y=3k vào biểu thức trên ta được:

\(\dfrac{3\left(10k\right)-2\left(3k\right)}{10k-3\left(3k\right)}\)=\(\dfrac{30k-6k}{10k-9k}=\dfrac{24k}{k}=24\)

Vậy với \(\dfrac{x}{y}=\dfrac{10}{3}\) thì giá trị biểu thức \(\dfrac{3x-2y}{x-3y}=24\).

4 tháng 8 2018

a, \(x^2+y^2=8\Rightarrow\left(x+y\right)^2-2xy=8\Rightarrow xy=\frac{8-\left(x+y\right)^2}{-2}=\frac{8-4}{-2}=-2\)

=>\(M=x^3+x^4+y^3+y^4=\left(x+y\right)^3-3xy\left(x+y\right)+\left(x^2+y^2\right)^2-2x^2y^2\)

\(=2^3-3.\left(-2\right).2+8^2-2.\left(-2\right)^2=76\)

b, \(M=x^2+y^2+2xy-4x-4y+3=\left(x+y\right)^2-4\left(x+y\right)+4-1=\left(x+y-2\right)^2-1=\left(5-2\right)^2-1=8\)

AH
Akai Haruma
Giáo viên
4 tháng 8 2018

a)

Ta có:

\(2xy=(x+y)^2-(x^2+y^2)=2^2-8=-4\Rightarrow xy=-2\)

Vậy:

\(M=x^3+x^4+y^3+y^4=(x^3+y^3)+(x^4+y^4)\)

\(=(x+y)(x^2+y^2)-xy(x+y)+(x^2+y^2)^2-2x^2y^2\)

\(=2.8-(-2).2+8^2-2(-2)^2\)

\(=76\)

AH
Akai Haruma
Giáo viên
4 tháng 8 2018

b)

\(M=x^2+y^2+2xy-4x-4y+3\)

\(=(x^2+xy)+(y^2+xy)-4(x+y)+3\)

\(=x(x+y)+y(x+y)-4(x+y)+3\)

\(=(x+y)(x+y)-4(x+y)+3\)

\(=5.5-4.5+3=8\)