Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\dfrac{x-y}{x+y}\)
=> \(P^2=\left(\dfrac{x-y}{x+y}\right)^2=\dfrac{\left(x-y\right)^2}{\left(x+y\right)^2}=\dfrac{x^2-2xy+y^2}{x^2+2xy+y^2}\) (*)
Thay x2 + y2 = \(\dfrac{50}{7}xy\) vào (*), ta có:
\(P^2=\dfrac{\dfrac{50}{7}xy-2xy}{\dfrac{50}{7}xy+2xy}=\dfrac{\dfrac{36}{7}xy}{\dfrac{64}{7}xy}=\dfrac{9}{16}\)
=> \(P=\sqrt{\dfrac{9}{16}}=\sqrt{\left(\pm\dfrac{3}{4}\right)^2}=\pm\dfrac{3}{4}\)
mà y > x > 0
=> P = 0,75
Phương An:hình như bạn bị nhầm thì phải
y>x> 0 => x-y < 0 và x+y > 0 => P < 0 chứ bạn
nếu bình luận thì tag tên mk vào nhé !
Cho y > x > 0 và \(\frac{x^2+y^2}{xy}=\frac{10}{3}\)
Tính giá trị của biểu thức \(M=\frac{x-y}{x+y}\)
Ta có :\(\frac{x^2+y^2}{xy}=\frac{10}{3}\Rightarrow3x^2+3y^2=10xy\)
\(\Rightarrow M^2=\frac{x^2-2xy+y^2}{x^2+2xy+y^2}=\frac{3x^2-6xy+3y^2}{3x^2+6xy+3y^2}=\frac{10xy-6xy}{10xy+6xy}=\frac{4xy}{16xy}=\frac{1}{4}\)
Vậy M=\(\frac{1}{4}\)
Bài 3:
\(\dfrac{a}{b}=\dfrac{3}{10}\)
=>3a=10b
=>\(a=\dfrac{10b}{3}\)
Do đó:\(B=\dfrac{4a\left(4a-10b\right)}{4a\left(2a-6b\right)}=\dfrac{a+3a-10b}{\dfrac{2.10b-18b}{3}}=\dfrac{a}{\dfrac{2}{3}b}=\dfrac{3a}{2b}\)
\(=\dfrac{\dfrac{3.10b}{3}}{2b}=\dfrac{10b}{2b}=5\)
bài 3 : a, cho \(3a^2+3b^2=10ab\) và b>a>0. tính gt biểu thức A= \(\dfrac{a-b}{a+b}\)
\(3a^2+3b^2=10ab\)
\(\Rightarrow3a^2-10ab+3b^2=0\)
\(\Rightarrow3a^2-9ab-ab+3b^2=0\)
\(\Rightarrow\left(3a^2-9ab\right)-\left(ab-3b^2\right)=0\)
\(\Rightarrow3a\left(a-3b\right)-b\left(a-3b\right)=0\)
\(\Rightarrow\left(a-3b\right)\left(3a-b\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}a-3b=0\\3a-b=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}a=3b\left(loai\right)\\a=\dfrac{b}{3}\end{matrix}\right.\)
a= 3b loại vì b > a > 0
Thay \(a=\dfrac{b}{3}\) vào biểu thức A ,có :
\(\dfrac{\dfrac{b}{3}-b}{\dfrac{b}{3}+b}=\dfrac{\dfrac{b-3b}{3}}{\dfrac{b+3b}{3}}=\dfrac{b-3b}{3}.\dfrac{3}{b+3b}=\dfrac{-2b}{4b}=-\dfrac{1}{2}\)
Vậy A =-1/2
b, tương tự tìm a theo b rồi thay vào biểu thức
Nếu bn ko lm đc thì bảo mk nha
Câu 1:
a: ĐKXĐ: \(x\notin\left\{0;1;\dfrac{1}{2}\right\}\)
\(B=\dfrac{x^2+x}{x^2+x+1}-\dfrac{2x^3+x^2-x-2x^3+2-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{-x\left(x-1\right)}{2x-1}\)
\(=\dfrac{x\left(x+1\right)}{x^2+x+1}-\dfrac{-2x+1}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{-x\left(x-1\right)}{2x-1}\)
\(=\dfrac{x\left(x+1\right)}{x^2+x+1}+\dfrac{2x-1}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{-x\left(x-1\right)}{2x-1}\)
\(=\dfrac{x\left(x+1\right)}{x^2+x+1}+\dfrac{-x}{x^2+x+1}=\dfrac{x^2}{x^2+x+1}\)
b: Để \(B=\dfrac{4}{3}\) thì \(\dfrac{x^2}{x^2+x+1}=\dfrac{4}{3}\)
\(\Leftrightarrow4x^2+4x+4-3x^2=0\)
=>x=-2(nhận)
Câu 1:
Áp dụng BĐT Cô-si:
\(x^4+y^2\geq 2\sqrt{x^4y^2}=2x^2y\Rightarrow \frac{x}{x^4+y^2}\leq \frac{x}{2x^2y}=\frac{1}{2xy}=\frac{1}{2}(1)\)
\(x^2+y^4\geq 2\sqrt{x^2y^4}=2xy^2\Rightarrow \frac{y}{x^2+y^4}\leq \frac{y}{2xy^2}=\frac{1}{2xy}=\frac{1}{2}(2)\)
Lấy \((1)+(2)\Rightarrow A\leq \frac{1}{2}+\frac{1}{2}=1\)
Vậy \(A_{\max}=1\). Dấu bằng xảy ra khi \(x=y=1\)
Câu 2:
Áp dụng BĐT Bunhiacopxky:
\(\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)(x^2+y^2+2xy)\geq (1+1)^2\)
\(\Rightarrow \frac{1}{x^2+y^2}+\frac{1}{2xy}\geq \frac{4}{x^2+y^2+2xy}=\frac{4}{(x+y)^2}\geq \frac{4}{1}=4(*)\)
(do \(x+y\leq 1\) )
Áp dụng BĐT Cô-si:
\(\frac{1}{4xy}+4xy\geq 2\sqrt{\frac{4xy}{4xy}}=2(**)\)
\(x+y\geq 2\sqrt{xy}\Leftrightarrow 1\geq 2\sqrt{xy}\Rightarrow xy\leq \frac{1}{4}\)
\(\Rightarrow \frac{5}{4xy}\geq \frac{5}{4.\frac{1}{4}}=5(***)\)
Cộng \((*)+(**)+(***)\Rightarrow B\geq 4+2+5=11\)
Vậy \(B_{\min}=11\)
Dấu bằng xảy ra khi \(x=y=\frac{1}{2}\)
\(x^2+y^2=\dfrac{50}{7}xy\)
\(\Leftrightarrow x^2-\dfrac{50}{7}xy+y^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=7y\left(loai\right)\\x=\dfrac{1}{7}y\end{matrix}\right.\)
\(\Rightarrow P=\dfrac{x-y}{x+y}=\dfrac{\dfrac{1}{7}y-y}{\dfrac{1}{7}y+y}\)
\(\Rightarrow P=-\dfrac{3}{4}=-0,75\)
Áp dụng BĐT Cauchy cho các số dương , ta có :
\(\dfrac{xy}{z}+\dfrac{yz}{x}\) ≥ \(2\sqrt{\dfrac{xy}{z}.\dfrac{yz}{x}}=2\sqrt{y^2}=2y\left(1\right)\)
\(\dfrac{yz}{x}+\dfrac{xz}{y}\) ≥ \(2\sqrt{\dfrac{yz}{x}.\dfrac{xz}{y}}=2\sqrt{z^2}=2z\left(2\right)\)
\(\dfrac{xy}{z}+\dfrac{xz}{y}\) ≥ \(2\sqrt{\dfrac{xy}{z}.\dfrac{xz}{y}}=2\sqrt{x^2}=2x\left(3\right)\)
Cộng từng vế của ( 1 ; 2 ; 3) , ta được :
\(2\left(\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{xz}{y}\right)\) ≥ \(2\left(x+y+z\right)\)
⇔ \(\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{xz}{y}\) ≥ \(x+y+z=2019\)
⇒ \(P_{Min}=2019\) ⇔ \(x=y=z=673\)
\(\dfrac{x^2+y^2}{xy}=\dfrac{10}{3}\Rightarrow\dfrac{x^2+y^2}{10}=\dfrac{xy}{3}\)
Đặt \(\dfrac{x^2+y^2}{10}=\dfrac{xy}{3}=k\) (k > 0)
\(\Rightarrow\left\{{}\begin{matrix}x^2+y^2=10k\\xy=3k\end{matrix}\right.\)
\(\Rightarrow x^2+y^2+2xy=10k+2.3k=16k\)
\(\Leftrightarrow\left(x+y\right)^2=16k\Rightarrow x+y=4\sqrt{k}\)
\(\Rightarrow x^2+y^2-2xy=10k-2.3k=4k\)
\(\Leftrightarrow\left(x-y\right)^2=4k\Rightarrow x-y=2\sqrt{k}\)
Ta có \(M=\dfrac{x-y}{x+y}=\dfrac{2\sqrt{k}}{4\sqrt{k}}=\dfrac{1}{2}\)