\(\frac{x^2cosa-2x+cosa}{x^2-2xcosa+1}\) (0<a<pi)
. CMR: -1 <= y...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
28 tháng 9 2019

\(M=\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}\left(2cos^2\frac{x}{2}-1\right)}}}\)

\(=\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{cos^2\frac{x}{2}}}}\)

\(=\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}cos\frac{x}{2}}}\)

\(=\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{cos^2\frac{x}{4}}}\) (tách tương tự như trên)

\(=\sqrt{\frac{1}{2}+\frac{1}{2}cos\frac{x}{4}}=\sqrt{cos^2\frac{x}{8}}=cos\frac{x}{8}\)

\(\Rightarrow n=8\)

9 tháng 4 2017

a) Ta có dao-ham-cua-ham-so-luong-giac

Do đó, y'<0 <=> dao-ham-cua-ham-so-luong-giac<=> x≠1 và x2 -2x -3 <0

<=> x≠ 1 và -1<x<3 <=> x∈ (-1;1) ∪ (1;3).

b) Ta có dao-ham-cua-ham-so-luong-giac

Do đó, y’≥0 <=> dao-ham-cua-ham-so-luong-giac<=> x≠ -1 và x2 +2x -3 ≥ 0 <=> x≠ -1 và x ≥ 1 hoặc x ≤ -3 <=> x ≥ 1 hoặc x ≤ -3

<=> x∈ (-∞;-3] ∪ [1;+∞).

c).Ta có dao-ham-cua-ham-so-luong-giac

Do đó, y’>0 <=>
dao-ham-cua-ham-so-luong-giac<=> -2x2 +2x +9>0 <=> 2x2 -2x -9 <0 <=> dao-ham-cua-ham-so-luong-giac <=> x∈ dao-ham-cua-ham-so-luong-giac vì x2 +x +4 = (x+1/2)2 + 15/4 >0, với ∀ x ∈ R.

26 tháng 5 2017

TenAnh1 TenAnh1 A = (-0.04, -7.12) A = (-0.04, -7.12) A = (-0.04, -7.12) B = (15.32, -7.12) B = (15.32, -7.12) B = (15.32, -7.12) C = (-4.78, -5.6) C = (-4.78, -5.6) C = (-4.78, -5.6) D = (7.82, -7.32) D = (7.82, -7.32) D = (7.82, -7.32) E = (-4.82, -6.92) E = (-4.82, -6.92) E = (-4.82, -6.92) F = (10.54, -6.92) F = (10.54, -6.92) F = (10.54, -6.92) G = (-7.14, -8.07) G = (-7.14, -8.07) G = (-7.14, -8.07) H = (12.33, -8.07) H = (12.33, -8.07) H = (12.33, -8.07) I = (-1.74, -9.56) I = (-1.74, -9.56) I = (-1.74, -9.56) J = (18.64, -9.56) J = (18.64, -9.56) J = (18.64, -9.56) K = (-7.17, -8.04) K = (-7.17, -8.04) K = (-7.17, -8.04) L = (12.3, -8.04) L = (12.3, -8.04) L = (12.3, -8.04) M = (-7.24, -7.99) M = (-7.24, -7.99) M = (-7.24, -7.99) N = (12.23, -7.99) N = (12.23, -7.99) N = (12.23, -7.99)

25 tháng 8 2019

1) a) cos7x - √3 sin7x = -√2 (a = 1; b = -√3; c = -√2)

=> a^2 + b^2 =4 > c^2 = 2

Chia 2 vế pt (*) cho \(\sqrt{a^2+b^2}=2\) ta đc:

<=> 1/2cos7x - √3/2 sin7x = -√2/2

<=> sin(π/6)cos7x - cos(π/6)sin7x = sin(-π/4)

<=> sin(π/6 - 7x) = sin(-π/4)

<=> π/6 - 7x = -π/4 + k2π

hoặc (k∈Z)

π/6 - 7x = π + π/4 + k2π

<=> x = 5π/84 + k2π/7

hoặc (k∈Z)

x = -13π/84 + k2π/7

25 tháng 8 2019

1) b) Ta có:

* 2π/5 < x < 6π/7

<=> 2π/5 < 5π/84 + k2π/7 < 6π/7

<=> 143π/420 < k2π/7 < 67π/84

<=> 143/120 < k < 67/24

=> k ϵ {2}

=> x = 53π/84

* 2π/5 < x < 6π/7

<=> 2π/5 < -13π/84 + k2π/7 < 6π/7

<=> 233/120 < k < 85/24

=> k ϵ {2; 3}

=> x = 5π/12 ; x = 59π/84

Vậy có tất cả 3 nghiệm thỏa mãn (2π/5;6π/7) là x = 53π/84; x = 5π/12 ; x = 59π/84.

22 tháng 1 2020

Ta có: \(tan\alpha\in\left(0;1\right)\) với mọi \(\alpha \in \left( {0;\dfrac{\pi }{4}} \right) \), do đó:

\(S = \underbrace {1 - \tan \alpha + {{\tan }^2}\alpha - {{\tan }^3}\alpha + ...}_{CSN\_lvh:{u_1} = 1,q = - \tan \alpha } = \dfrac{1}{{1 + \tan \alpha }} = \dfrac{{\cos \alpha }}{{\sin \alpha + \cos \alpha }} = \dfrac{{\cos \alpha }}{{\sqrt 2 \sin \left( {\alpha + \dfrac{\pi }{4}} \right)}}\)

NV
31 tháng 8 2020

Bạn sai ở chỗ này:

\(2cos2x=2cos2x.sinx\)

\(\Leftrightarrow sinx=\frac{2cos2x}{2cos2x}\)

Đúng ra phải là: \(\Leftrightarrow2cos2x.sinx-2cos2x=0\)

\(\Leftrightarrow2cos2x\left(sinx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\sinx=1\end{matrix}\right.\)