Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ \(\frac{x}{y-z}+\frac{y}{z-x}+\frac{z}{x-y}=0\Rightarrow\frac{x}{y-z}=-\frac{y}{z-x}-\frac{z}{x-y}\)
\(\Rightarrow\frac{x}{y-z}=\frac{y}{x-z}+\frac{z}{y-x}\)
\(\Leftrightarrow\frac{x}{y-z}=\frac{y\left(y-x\right)+z\left(x-z\right)}{\left(x-z\right)\left(y-x\right)}\)
\(\Leftrightarrow\frac{x}{y-z}=\frac{y^2-xy+zx-z^2}{\left(x-z\right)\left(y-x\right)}\)
\(\Leftrightarrow\frac{x}{\left(y-z\right)^2}=\frac{y^2-xy+zx-z^2}{\left(x-z\right)\left(y-x\right)\left(y-z\right)}\)
C/m tương tự đc \(\frac{y}{\left(z-x\right)^2}=\frac{z^2-yz+xy-x^2}{\left(x-z\right)\left(y-z\right)\left(y-z\right)}\)
\(\frac{z}{\left(x-y\right)^2}=\frac{x^2-xz+zy-y^2}{\left(x-z\right)\left(y-x\right)\left(y-z\right)}\)
Khi đó \(Q=\frac{y^2-xy+xz-z^2+z^2-yz+xy-x^2+x^2-xz+yz-y^2}{\left(x-z\right)\left(y-x\right)\left(y-z\right)}=0\)
Vậy Q=0
1)\(A=\frac{b\left(2a\left(a+5b\right)+\left(a+5b\right)\right)}{a-3b}.\frac{a\left(a-3b\right)}{ab\left(a+5b\right)}=\frac{b\left(a+5b\right)\left(2a+1\right).a\left(a-3b\right)}{\left(a-3b\right).ab\left(a+5b\right)}\)
\(A=2a+1\)=>lẻ với mọi a thuộc z=> dpcm
2) từ: x+y+z=1=> xy+z=xy+1-x-y=x(y-1)-(y-1)=(y-1)(x-1)
tường tự: ta có tử của Q=(x-1)^2.(y-1)^2.(z-1)^2=[(x-1)(y-1)(z-1)]^2=[-(z+y).-(x+y).-(x+y)]^2=Mẫu=> Q=1
3) kiểm tra lại xem đề đã chuẩn chưa
\(x^3+y^3+z^3=3xyz\)
\(x^3+y^3+z^3-3xyz=0\)
\(\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)=0\)
\(x^2+y^2+z^2-xy-xz-yz=0\left(x+y+z\ne0\right)\)
\(2\times\left(x^2+y^2+z^2-xy-xz-yz\right)=0\times2\)
\(2x^2+2y^2+2z^2-2xy-2xz-2yz=0\)
\(x^2-2xy+y^2+x^2-2xz+z^2+y^2-2yz+z^2=0\)
\(\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2=0\)
\(\left[\begin{array}{nghiempt}x-y=0\\x-z=0\\y-z=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=y\\x=z\\y=z\end{array}\right.\)
x = y = z
\(P=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{x}{z}\right)\)
\(=\left(1+\frac{x}{x}\right)\left(1+\frac{y}{y}\right)\left(1+\frac{z}{z}\right)\)
\(=\left(1+1\right)\left(1+1\right)\left(1+1\right)\)
\(=2^3\)
\(=8\)
a) \(\frac{x+1}{2x+6}\)+\(\frac{2x+3}{x\left(x+3\right)}\)
= \(\frac{x+1}{2\left(x+3\right)}\)+ \(\frac{2x+3}{x\left(x+3\right)}\)
= \(\frac{x\left(x+1\right)}{2x\left(x+3\right)}\)+ \(\frac{2\left(2x+3\right)}{2x\left(x+3\right)}\)
= \(\frac{x^2+x+4x+6}{2x\left(x+3\right)}\)
= \(\frac{x^2+5x+6}{2x\left(x+3\right)}\)
= \(\frac{\left(x+2\right)\left(x+3\right)}{2x\left(x+3\right)}\)
= \(\frac{x+2}{2x}\)
b) \(\frac{x-1}{x}\)+ \(\frac{x+2}{2}\)
= \(\frac{2\left(x-1\right)}{2x}\)+ \(\frac{x\left(x+2\right)}{2x}\)
= \(\frac{2x-2+x^2+2x}{2x}\)
= \(\frac{x^2+4x-2}{2x}\)
c) \(\frac{1}{x+y}\)+ \(\frac{-1}{x-y}\)+ \(\frac{2x}{x^2+y^2}\)
= \(\frac{\left(x-y\right)\left(x^2+y^2\right)}{\left(x^2+y^2\right)\left(x-y\right)\left(x+y\right)}\)+\(\frac{-\left(x+y\right)\left(x^2+y^2\right)}{\left(x^2+y^2\right)\left(x-y\right)\left(x+y\right)}\)+ \(\frac{2x\left(x-y\right)\left(x+y\right)}{\left(x^2+y^2\right)\left(x-y\right)\left(x+y\right)}\)
= \(\frac{x^3+xy^2-x^2y-y^3-x^3-xy^2-xy^2-y^3+2x^3+2x^2y-2x^2y+2xy^2}{\left(x^2+y^2\right)\left(x^2-y^2\right)}\)
= \(\frac{2x^3+xy^2-x^2y-2y^3}{\left(x^2+y^2\right)\left(x^2-y^2\right)}\)
= \(\frac{\left(2x^3-2y^3\right)-\left(x^2y-xy^2\right)}{\left(x^2+y^2\right)\left(x^2-y^2\right)}\)
= \(\frac{2\left(x-y\right)\left(x^2+xy+y^2\right)-xy\left(x-y\right)}{\left(x^2+y^2\right)\left(x^2-y^2\right)}\)
= \(\frac{\left(x-y\right)\left(2x^2+2xy+2y^2-xy\right)}{\left(x^2+y^2\right)\left(x^2-y^2\right)}\)
= \(\frac{2x^2+xy+2y^2}{\left(x+y\right)\left(x^2+y^2\right)}\)
e) = \(\frac{3x^2-6xy+3y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
= \(\frac{3\left(x-y\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
=\(\frac{3x-3y}{x^2+xy+y^2}\)
( Mình bận rồi, lát làm câu d nhé)