\(\sqrt{x}\)+\(\sqrt{y}\)+
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2018

Áp dụng BĐT AM-GM, Ta có

\(\sqrt{x-1}\le\dfrac{1+x-1}{2}=\dfrac{x}{2}\Rightarrow yz\sqrt{x-1}\le\dfrac{xyz}{2}\)

\(xz\sqrt{y-2}\le\dfrac{xz\sqrt{2\left(y-2\right)}}{\sqrt{2}}\le\dfrac{xyz}{2\sqrt{2}}\)

\(yx\sqrt{z-3}\le yx.\dfrac{3+z-3}{2\sqrt{3}}=\dfrac{xyz}{2\sqrt{3}}\)

\(\Rightarrow\dfrac{xy\sqrt{x-1}+xz\sqrt{y-2}+yz\sqrt{z-3}}{xyz}\le\dfrac{1}{2}+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{2\sqrt{3}}=\dfrac{1}{2}+\dfrac{\sqrt{2}}{4}+\dfrac{\sqrt{3}}{6}\)

17 tháng 9 2017

\(\sqrt{x-1}+\sqrt{y-2}+\sqrt{z-3}=6-\dfrac{1}{\sqrt{x-1}}-\dfrac{1}{\sqrt{y-2}}-\dfrac{1}{\sqrt{z-3}}\Leftrightarrow\left(\sqrt{x-1}+\dfrac{1}{\sqrt{x-1}}\right)+\left(\sqrt{y-2}+\dfrac{1}{\sqrt{y-2}}\right)+\left(\sqrt{z-3}+\dfrac{1}{\sqrt{z-3}}\right)=6\)Áp dụng bất đẳng thức cô si ta có :

\(\sqrt{x-1}+\dfrac{1}{\sqrt{x-1}}\ge2\sqrt{\sqrt{x-1}.\dfrac{1}{\sqrt{x-1}}}=2\)

Tương tự :\(\sqrt{y-2}+\dfrac{1}{\sqrt{y-2}}\ge2\)

\(\sqrt{z-3}+\dfrac{1}{\sqrt{z-3}}\ge2\)

Do đó :\(\left(\sqrt{x-1}+\dfrac{1}{\sqrt{x-1}}\right)+\left(\sqrt{y-2}+\dfrac{1}{\sqrt{y-2}}\right)+\left(\sqrt{z-3}+\dfrac{1}{\sqrt{z-3}}\right)\ge6\)Dấu "=+ xảy ra khi :\(\left\{{}\begin{matrix}\sqrt{x-1}=\dfrac{1}{\sqrt{x-1}}\\\sqrt{y-2}=\dfrac{1}{\sqrt{y-2}}\\\sqrt{z-3}=\dfrac{1}{\sqrt{z-3}}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x-1=1\\y-2=1\\z-3=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=3\\z=4\end{matrix}\right.\)

Vậy \(x=2,y=3,z=4\)

17 tháng 9 2017

camon

20 tháng 10 2018

1) +) ta có : \(C-\dfrac{1}{3}\Leftrightarrow\dfrac{\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{1}{3}=\dfrac{3\sqrt{x}-x+\sqrt{x}-1}{3\left(x+\sqrt{x}+1\right)}\)

\(=\dfrac{-\left(x-4\sqrt{x}+4\right)+3}{3\left(x+\sqrt{x}+1\right)}=\dfrac{-\left(\sqrt{x}-2\right)^2+3}{3\left(x+\sqrt{x}+1\right)}\)

không thể cm được đâu bn --> xem lại đề

2) +) ta có : \(D=\dfrac{\sqrt{x}-1}{\sqrt{x}+2}=1-\dfrac{3}{\sqrt{x}+2}\)

--> để \(D\in Z\Leftrightarrow\sqrt{x}+2\) là ước của 3 \(\Leftrightarrow\sqrt{x}+2\in\left\{\pm1;\pm3\right\}\)

\(\Leftrightarrow x=1\) vậy \(x=1\)

3) +) tương tự 2)

4) a) +) điều kiện xác định : \(x>0;x\ne4\)

ta có : \(A=\left(\dfrac{2}{\sqrt{x}+3}-\dfrac{1}{\sqrt{x}}\right):\dfrac{\sqrt{x}-2}{x+3\sqrt{x}}\)

\(\Leftrightarrow A=\left(\dfrac{2\sqrt{x}-\sqrt{x}-3}{\sqrt{x}\left(\sqrt{x}+3\right)}\right):\dfrac{x+3\sqrt{x}}{\sqrt{x}-2}=\dfrac{\sqrt{x}-3}{\sqrt{x}-2}\)

b) ta có : \(A=3\Leftrightarrow\dfrac{\sqrt{x}-3}{\sqrt{x}-2}=3\Leftrightarrow\sqrt{x}-3=3\sqrt{x}-6\)

\(\Leftrightarrow2\sqrt{x}=3\Leftrightarrow\sqrt{x}=\dfrac{3}{2}\Leftrightarrow x=\dfrac{9}{4}\) vậy \(x=\dfrac{9}{4}\)

c) ta có : \(B=A.\dfrac{\sqrt{x}+3}{\sqrt{x}+2}=\dfrac{\sqrt{x}-3}{\sqrt{x}-2}.\dfrac{\sqrt{x}+3}{\sqrt{x}+2}=\dfrac{x-9}{x-4}=1-\dfrac{5}{x-4}\)

tương tự 2 )
\(\)

21 tháng 5 2017

from giả thiết => x+y+z=xyz

biến đổi như sau:\(\dfrac{x}{\sqrt{yz\left(1+x^2\right)}}=\dfrac{x}{\sqrt{yz+x^2yz}}=\dfrac{x}{\sqrt{yz+x\left(x+y+z\right)}}=\dfrac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}}\)

=\(\sqrt{\dfrac{x^2}{\left(x+y\right)\left(x+z\right)}}\le\dfrac{1}{2}\left(\dfrac{x}{x+y}+\dfrac{x}{x+z}\right)\)

21 tháng 5 2017

shit , có vậy mak t nhìn cũng ko ra ~

5 tháng 4 2018

\(\dfrac{\sqrt{1\left(x-1\right)}}{x}\le\dfrac{1+x-1}{2x}=\dfrac{1}{2}\) ( cauchy )

TT,\(\dfrac{\sqrt{y-2}}{y}\le\dfrac{1}{2\sqrt{2}};\dfrac{\sqrt{z-3}}{z}\le\dfrac{1}{2\sqrt{3}}\)

cộng vế theo vế => đpcm

5 tháng 4 2018

Thì biết pass facebook thôi chứ cũng không biết có hack không

Bạn ấy đăng nhập bằng FACEBOOK mà