Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ \(P=\frac{x}{y^2+1}+\frac{1}{y^2+1}+\frac{y}{z^2+1}+\frac{1}{z^2+1}+\frac{z}{x^2+1}+\frac{1}{x^2+1}\)
+ \(\frac{1}{x^2+1}=\frac{x^2+1-x^2}{x^2+1}=1-\frac{x^2}{x^2+1}\)
+ \(x^2+1\ge2x\forall x\)
\(\Rightarrow\frac{x^2}{x^2+1}\le\frac{x^2}{2x}=\frac{x}{2}\)
\(\Rightarrow-\frac{x^2}{x^2+1}\ge-\frac{x}{2}\)
\(\Rightarrow\frac{1}{x^2+1}\ge1-\frac{x}{2}\)
Dấu "=" xảy ra <=> x = 1
+ Tương tự ta cm đc :
\(\frac{1}{y^2+1}\ge1-\frac{y}{2}\). Dấu "=" xảy ra <=> y = 1
\(\frac{1}{z^2+1}\ge1-\frac{z}{2}\). Dấu "=" xảy ra <=> z = 1
Do đó : \(\frac{1}{x^2+1}+\frac{1}{y^2+1}+\frac{1}{z^2+1}\ge3-\left(\frac{x}{2}+\frac{y}{2}+\frac{z}{2}\right)\)
\(\Rightarrow\frac{1}{x^2+1}+\frac{1}{y^2+1}+\frac{1}{z^2+1}\ge3-\frac{3}{2}=\frac{3}{2}\) (1)
Dấu "=" xảy ra <=> x = y = z = 1.
+ \(\frac{x}{y^2+1}=\frac{x\left(y^2+1\right)-xy^2}{y^2+1}=x-\frac{xy^2}{y^2+1}\)
\(\Rightarrow\frac{x}{y^2+1}\ge x-\frac{xy^2}{2y}=x-\frac{xy}{2}\) ( do \(y^2+1\ge2y\forall y\) )
Dấu "=" xảy ra <=> y = 1.
Tương tự : \(\frac{y}{z^2+1}\ge y-\frac{yz}{2}\). Dấu "=" xảy ra <=> z = 1.
\(\frac{z}{x^2+1}\ge z-\frac{zx}{2}\). Dấu "=" xảy ra <=> x = 1.
Do đó : \(\frac{x}{y^2+1}+\frac{y}{z^2+1}+\frac{z}{x^2+1}\ge\left(x+y+z\right)-\frac{xy+yz+zx}{2}\)
\(\Rightarrow\frac{x}{y^2+1}+\frac{y}{z^2+1}+\frac{z}{x^2+1}\ge3-\frac{\frac{\left(x+y+z\right)^2}{3}}{2}\)
( do \(xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}\) )
\(\Rightarrow\frac{x}{y^2+1}+\frac{y}{z^2+1}+\frac{z}{x^2+1}\ge3-\frac{3}{2}=\frac{3}{2}\) (2)
Dấu "=" xảy ra <=> x = y = z = 1.
Từ (1) và (2) suy ra
\(P\ge\frac{3}{2}+\frac{3}{2}=3\)
P = 3 \(\Leftrightarrow x=y=z=1\)
Vậy Min P = 3 \(\Leftrightarrow x=y=z=1\).
2 )\(\frac{1}{1+x}\ge\left(1-\frac{1}{1+y}\right)+\left(1-\frac{1}{1+z}\right)=\frac{y}{1+y}+\frac{z}{1+z}\ge2\sqrt{\frac{yz}{\left(1+y\right)\left(1+z\right)}}\)
CMTT \(\frac{1}{1+y}\ge2\sqrt{\frac{xy}{\left(1+x\right)\left(1+y\right)}};\frac{1}{1+z}\ge2\sqrt{\frac{xy}{\left(1+x\right)\left(1+y\right)}}\)
Nhân vế với vế 3 bđt được
\(\frac{1}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\ge\frac{8xyz}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\)
\(\Rightarrow P=xyz\le\frac{1}{8}\)
Dấu "=" xảy ra khi z=y=z = 1/2
1)
\(\Leftrightarrow\frac{\left(a-b\right)^2}{8b}>\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{2}\Leftrightarrow\frac{a-b}{2\sqrt{b}}>\sqrt{a}-\sqrt{b}\)
\(\Leftrightarrow a-2\sqrt{ab}+b>0\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2>0\) (có a>b>0 theo gt) (đpcm)
\(\frac{x}{1+y^2}=x-\frac{xy^2}{1+y^2}\ge x-\frac{xy^2}{2y}=x-\frac{1}{2}xy\)
Tương tự và cộng lại:
\(A\ge x+y+z-\frac{1}{2}\left(xy+yz+zx\right)\ge x+y+z-\frac{1}{6}\left(x+y+z\right)^2=\frac{3}{2}\)
\("="\Leftrightarrow x=y=z=1\)
Bài 2. Áp dụng BĐT Cauchy dưới dạng Engel , ta có :
\(\dfrac{1}{x}+\dfrac{4}{y}+\dfrac{9}{z}\) ≥ \(\dfrac{\left(1+4+9\right)^2}{x+y+z}=196\)
⇒ \(P_{MIN}=196."="\) ⇔ \(x=y=z=\dfrac{1}{3}\)
\(2.\) Bạn nghiêm túc gửi câu hỏi nhé!. Mình có lời giải rồi