Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : (x - 1)(y - 1)(z - 1) = (xy - x - y + 1)(z - 1) = xyz - xz - yz + z - xy + x + y - 1 = (x + y + z) -\(\frac{xy+yz+xz}{1}\)+ 1 - 1
= x + y + z -\(\frac{xy+yz+xz}{xyz}\)= (x + y + z) - (\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)) > 0 (do gt)
Có 2 trường hợp để (x - 1)(y - 1)(z - 1) > 0 :
_ x - 1 ; y - 1 ; z - 1 > 0 => x ; y ; z > 1 => xyz > 1 (trái với gt - loại)
_ 1 trong 3 số x - 1 ; y - 1 ; z - 1 dương,2 số còn lại âm => 1 trong 3 số x,y,z lớn hơn 1 (đpcm)
Đặt \(x=a^3,y=b^3,z=c^3\Rightarrow\)a,b,c dương và abc=1
\(x+y+1=a^3+b^3+1=\left(a+b\right)\left(a^2+b^2-ab\right)+1\ge\left(a+b\right)ab+abc\)
\(\Rightarrow\frac{1}{x+y+1}=\frac{1}{a^3+b^3+1}\le\frac{1}{abc+ab\left(a+b\right)}=\frac{abc}{abc+ab\left(a+b\right)}=\frac{c}{a+b+c}\)
Tương tự \(\Rightarrow\frac{1}{y+z+1}\le\frac{a}{a+b+c};\frac{1}{x+z+1}\le\frac{b}{a+b+c}\)
\(\Rightarrow\frac{1}{x+y+1}+\frac{1}{y+z+1}+\frac{1}{x+z+1}\le\frac{c}{a+b+c}\frac{a}{a+b+c}\frac{b}{a+b+c}=1\)(đpcm)
Câu a đề hơi sai nha bạn, nên mình chỉ giải câu b thoi
Áp dụng AM-GM cho các bộ 3 số dương (x,y,z) và (1/x,1/y,1/z):
\(x+y+z\ge3\sqrt[3]{xyz}\)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{3}{\sqrt[3]{xyz}}\)
\(\Rightarrow P\ge6\sqrt[3]{xyz}+\frac{3}{\sqrt[3]{xyz}}\ge2\sqrt{6\sqrt[3]{xyz}.\frac{3}{\sqrt[3]{xyz}}}=6\sqrt{2}\)(BĐT Cô-si)
Dấu = xảy ra khi và chỉ khi \(x=y=z=\frac{1}{\sqrt{2}}\)( thỏa x,y,z thuộc (0;1))
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\Leftrightarrow\frac{1}{x}=\left(\frac{1}{2}-\frac{1}{y}\right)+\left(\frac{1}{2}-\frac{1}{z}\right)\)\(\Leftrightarrow\frac{1}{x}=\frac{1}{2}\left(\frac{y-2}{y}+\frac{z-2}{z}\right)\)
Áp dụng BĐT Cauchy ta có \(\frac{1}{x}=\frac{1}{2}\left(\frac{y-2}{y}+\frac{z-2}{z}\right)\ge\sqrt{\frac{\left(y-2\right)\left(z-2\right)}{yz}}\)
Tương tự : \(\frac{1}{y}\ge\sqrt{\frac{\left(x-2\right)\left(z-2\right)}{xz}}\) ; \(\frac{1}{z}\ge\sqrt{\frac{\left(x-2\right)\left(y-2\right)}{xy}}\)
Nhân theo vế được : \(\frac{1}{xyz}\ge\frac{\left(x-2\right)\left(y-2\right)\left(z-2\right)}{xyz}\Rightarrow\left(x-2\right)\left(y-2\right)\left(z-2\right)\le1\)
BẠN XEM BÀI NÀY, BÀI TRÊN MÌNH VIẾT THỪA DÒNG CUỐI.
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\Leftrightarrow\frac{1}{x}=\left(\frac{1}{2}-\frac{1}{y}\right)+\left(\frac{1}{2}-\frac{1}{z}\right)\)\(\Leftrightarrow\frac{1}{x}=\frac{1}{2}\left(\frac{y-2}{y}+\frac{z-2}{z}\right)\)
Áp dụng BĐT Cauchy ta có \(\frac{1}{x}=\frac{1}{2}\left(\frac{y-2}{y}+\frac{z-2}{z}\right)\ge\sqrt{\frac{\left(y-2\right)\left(z-2\right)}{yz}}\)
Tương tự : \(\frac{1}{y}\ge\sqrt{\frac{\left(x-2\right)\left(z-2\right)}{xz}}\) ; \(\frac{1}{z}\ge\sqrt{\frac{\left(x-2\right)\left(y-2\right)}{xy}}\)
Nhân theo vế được : \(\frac{1}{xyz}\ge\frac{\left(x-2\right)\left(y-2\right)\left(z-2\right)}{xyz}\Rightarrow\left(x-2\right)\left(y-2\right)\left(z-2\right)\le1\)
\(\frac{1}{xyz}\)
\(x,y,z\ge1\)nên ta có bổ đề: \(\frac{1}{a^2+1}+\frac{1}{b^2+1}\ge\frac{2}{ab+1}\)
ÁP dụng: \(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}+\frac{1}{1+\sqrt[3]{xyz}}\ge\frac{2}{1+\sqrt{xy}}+\frac{2}{1+\sqrt{\sqrt[3]{xyz^4}}}\)
\(\ge\frac{4}{1+\sqrt[4]{\sqrt[3]{x^4y^4z^4}}}=\frac{4}{1+\sqrt[3]{xyz}}\)
\(\Rightarrow\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{3}{1+\sqrt[3]{xyz}}\)
Dấu = xảy ra \(x=y=z\)hoặc x=y,xz=1 và các hoán vị
trc giờ mấy bài này tui toàn quy đồng thôi, may có cách này =))
\(VT=\left(1-\frac{1}{x+1}\right)+\left(1-\frac{1}{y+1}\right)+\left(1-\frac{1}{z+1}\right)\)
\(=\left(1+1+1\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)
\(\le3-\frac{9}{x+y+z+3}=3-\frac{9}{1+3}=\frac{3}{4}^{\left(đpcm\right)}\) (Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\))
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y+z=1\\\frac{1}{x+1}=\frac{1}{y+1}=\frac{1}{z+1}\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y+z=1\\x+1=y+1=z+1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y+z=1\\x=y=z\end{cases}}\Leftrightarrow x=y=z=\frac{1}{3}\)
Đầu tiên CM BDT :
\(1+x^3+y^3\ge xy"x+y+z"\)
\(\Leftrightarrow x^3+y^3\ge xy"x+y"\)" do \(xyz=1\)"
\(\Leftrightarrow"x+y""x^2+y^2-xy"-xy"x+y"\ge0\)
\(\Leftrightarrow"x+y""x-y"^2\ge0\)
BDT luôn đúng theo gt
\(\Rightarrow\sqrt{"1+x^3+y^3"}\ge\sqrt{xy"x+y+z"}\)
\(\Rightarrow\sqrt{\frac{"1+x^3+y^3}{xy}}\ge\sqrt{\frac{"x+y+z"}{xz}}\)
Tương tự
\(\Rightarrow\sqrt{\frac{"1+z^3+y^3}{zy}}\ge\sqrt{\frac{"x+y+z"}{zy}}\)
\(\sqrt{\frac{"1+x^3+y^3"}{xz}}\ge\sqrt{\frac{"x+y+z"}{xz}}\)
\(\Rightarrow VT\ge\sqrt{"x+y+z"}.\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{zx}}\)
AD BDT Cauchy cho các số > 0
\(x+y+z\ge3\). \(\sqrt[3]{xyz}=3\)
\(\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{zx}}\ge\frac{3}{\sqrt[3]{xyz}}=3\)
\(\Rightarrow VT\ge\sqrt{3}.3=3\sqrt{3}=VP\)
\(\Rightarrow VT\ge VP\)
\(\Rightarrow DPCM\)
Vậy Dấu \(= khi x=y=z=1\)
P/s: Thay dấu noặc kép thành ngọc đơn nha, Ko chắc đâu
{xyz=1
1x+1y+1z<x+y+z
⇔{xyz=1
xyz(1x+1y+1z)<x+y+z{xyz=11x+1y+1z<x+y+z
⇔{xyz=1
xyz(1x+1y+1z)<x+y+z
⇔{xyz=1
xy+yz+zx<x+y+z⇔{xyz=1x+y+z−(xy+yz+zx)>0
⇔{xyz=1
xy+yz+zx<x+y+z
⇔{xyz=1
x+y+z−(xy+yz+zx)>0
Xét tích:
(x−1)(y−1)(z−1)=xyz−(xy+yz+zx)+(x+y+z)−1=x+y+z−(xy+yz+zx)>0
⇒(x−1)(y−1)(z−1)>0
(x−1)(y−1)(z−1)=xyz−(xy+yz+zx)+(x+y+z)−1=x+y+z−(xy+yz+zx)>0
⇒(x−1)(y−1)(z−1)>0
Vậy trong 3 số x,y,zx,y,z có 1 số lớn hơn 1, 2 số nhỏ hơn 1 hoặc cả 3 số lớn hơn 1
Tuy nhiên, nếu x,y,z>1⇒xyz>1x,y,z>1⇒xyz>1. Mâu thuẫn với gt
Vậy ta có ĐPCM
Vào google tìm nhé !