\(\left(\frac{1}{^{x^3}}+\frac{1}{y^3}+\frac{1}{z^3}\right)\)= 3 biết 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2016

CM xyz(1/x^3 + 1/y^3 + 1/z^3) = 3 à

12 tháng 5 2016

thế bài này yêu cầu j nhỉ

18 tháng 10 2019

ADTC dãy tỉ số bằng nhau đc ko hay pk mấy cái cosi hay cot , tan , .... 

29 tháng 8 2017

cha ôi rk mà cx ko bt

3 tháng 10 2017

khó vcl

a: x-y-z=0

=>x=y+z; y=x-z; z=x-y

\(K=\dfrac{x-z}{x}\cdot\dfrac{y-x}{y}\cdot\dfrac{z+y}{z}=\dfrac{y\cdot\left(-z\right)\cdot x}{xyz}=-1\)

b: Tham khảo:

undefined

a, Chứng minh \(x^3+y^3+z^3=\left(x+y\right)^3-3xy.\left(x+y\right)+z^3\)

Biến đổi vế phải thì ta phải suy ra điều phải chứng minh 

b, Ta có: \(a+b+c=0\)thì 

\(a^3+b^3+c^3==\left(a+b\right)^3-3ab\left(a+b\right)+c^3=-c^3-3ab\left(-c\right)+c^3=3abc\)

  ( Vì \(a+b+c=0\)nên \(a+b=-c\))

Theo giả thuyết \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

\(\Rightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{3}{xyz}\)

Khi đó \(A=\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}\)

\(=\frac{xyz}{x^3}+\frac{xyz}{y^3}+\frac{xyz}{z^3}\)

\(=xyz\left(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\right)\)

\(=xyz.\frac{3}{xyz}=3\)

19 tháng 11 2016

Ta có 

a3 + b3 + c3 - 3abc = 0

<=> (a + b)3 + c3 - 3ab(a + b) - 3abc = 0

<=> (a + b + c)(a2 + b2 + c2 + 2ab - ac - bc) - 3ab(a + b + c) = 0

<=> (a + b + c)(a2 + b2 + c2 - ab - ac - bc) = 0

<=> (a2 + b2 + c2 - ab - ac - bc) = 0

<=> (a2 - 2ab + b2) + (a2 - 2ac - c2) + (b2 - 2bc + c2) = 0

<=> (a - b)2 + (a - c)2 + (b - c)2 = 0

<=> a = b = c

=> P = (1 + 1)(1 + 1)(1 +1) = 8