\(x,y,z\ge0\)thỏa mãn xy+yz=zx=100

Tìm giá trị nhỏ nhất của A=xyz

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2018

\(M=\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}\)

    \(=\frac{x^2y^2+y^2z^2+z^2x^2}{xyz}\)

    \(=\frac{\left(xy+yz+zx\right)^2-2x^2yz-2xyz^2-2x^2yz}{xyz}\)

    \(=\frac{0-2xyz\left(x+y+z\right)}{xyz}\)

    \(=0-2\left(x+y+z\right)\)

    \(=0-2.\left(-1\right)=0-\left(-2\right)=2\)

Chúc bạn học tốt.

22 tháng 2 2021

 \(M=\frac{1}{1+x+xy}+\frac{1}{1+y+yz}+\frac{1}{1+z+zx}\)

Vì xyz=1 nên \(x\ne0;y\ne0;z\ne0\)

Ta có \(\frac{1}{1+x+xy}=\frac{z}{\left(1+y+yz\right)xz}=\frac{xz}{z+xz+1}\)

Tương tự \(\frac{1}{1+y+yz}=\frac{xz}{\left(1+y+yz\right)xz}=\frac{xz}{xz+z+1}\)

Khi đó \(M=\frac{z}{z+xz+1}+\frac{xz}{xz+1+z}+\frac{1}{1+z+xz}=\frac{z+xz+1}{z+zx+1}=1\)

22 tháng 7 2018

Sorry mình mới học lớp 5

14 tháng 3 2020

mk cx vậy

21 tháng 1 2019

Ta có:

\(xy+yz+zx=\frac{\left(x+y+z\right)^2-x^2-y^2-z^2}{2}=\frac{7^2-23}{2}=13\)

Ta lại có:

\(xy+z-6=xy+z+1-x-y-z=\left(x-1\right)\left(y-1\right)\)

\(\Rightarrow A=\frac{1}{\left(x-1\right)\left(y-1\right)}+\frac{1}{\left(y-1\right)\left(z-1\right)}+\frac{1}{\left(z-1\right)\left(x-1\right)}\)

\(=\frac{x+y+z-3}{xyz-xy-yz-zx+x+y+z-1}=-1\)