K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2016

cả ba số bằng nhau thì số nào công số nào mà chẳng bằng

nhau . 

ví dụ :

 x = y = z = 1

x + y = y + z = x + z = 2

nhé !

19 tháng 4 2020

Ta chứng minh \(P\ge\frac{25}{64}\). Thật vậy:

Đặt \(p=x+y+z=\frac{3}{2},q=ab+bc+ca,r=abc\)

Cần chứng minh: 2%5C%2Cq+3%5C%2Cr+%7B%5Cfrac%7B191%7D%7B64%7D%7D+%7Br%7D%5E%7B2%7D%20%5Cgeqq%200

Dễ thấy khi r giảm thì f(r) giảm. Mà theo Schur: -3/8 + (2*q)/3=-1/9*p^3 + 4/9*q*p <= r 

Nên \(f\left(r\right)\ge f\left(\frac{2q}{3}-\frac{3}{8}\right)=\frac{\left(4q-3\right)\left(q-6\right)}{9}\ge0\)

Done.

19 tháng 4 2020

Bunyakovski hả?

Có: \(\left(x^3+y^3+z^3\right)\ge\frac{\left(x^2+y^2+z^2\right)^2}{x+y+z}=\frac{2\left(x^2+y^2+z^2\right)^2}{3}\)

Cần chứng minh: \(\frac{2\left(x^2+y^2+z^2\right)^2}{3}+x^2y^2z^2\ge\frac{25}{64}\)

Or \(\frac{\left(x^2+y^2+z^2\right)^2}{x+y+z}+\left(x^2y^2z^2+\frac{1}{64}\right)\ge\frac{13}{32}\)

Or: \(\frac{\left(x^2+y^2+z^2\right)^2}{x+y+z}+\frac{1}{4}xyz\ge\frac{13}{32}=\frac{13}{108}\left(x+y+z\right)^3\)(*)

gif.latex?%5Csum%20%5Cleft%28%2045%5C%2C%7Bx%7D%5E%7B2%7D&plus;48%5C%2Cxz&plus;50%5C%2C%7By%7D%5E%7B2%7D&plus;38%5C%2Cyz&plus;%7B%5Cfrac%20%7B43%5C%2C%7Bz%7D%5E%7B2%7D%7D%7B2%7D%7D%20%5Cright%29%20%5Cleft%28%20x-y%20%5Cright%29%20%5E%7B2%7D%5Cgeqq%200 (1)

Điều thú vị là BĐT (*) đúng với mọi x,y,z thuộc R thỏa mãn x + y + z \(\ge0\) (nhờ đẳng thức (1) ). 

Mà điều này luôn đúng do điều kiện...

17 tháng 1 2017

Chịu không có cách nào làm được

12 tháng 9 2017

y+x=189

y+y.3=189

y.4=189

y=47,25

26 tháng 6 2017

1/x + 1/y + 1/z = 1/4 = 3/12 = 1/12 + 1/12 + 1/12

Suy ra x = y = z = 12

k mình nha đại luffy

30 tháng 3 2017

1/x + 1/y + 1/z = 1/4 = 3/12 = 1/12 + 1/12 + 1/12

Suy ra x = y = z = 12

16 tháng 9 2017

Ta có y=17,z=24 và x+y+z=88

Từ đó suy ra x=88-y-z

                     x=88-17-24

                     x=47

Vậy x =47

29 tháng 6 2018

Bài 1 : 

\(a)\) Ta có : 

\(3x=4y=6z\)

\(\Leftrightarrow\)\(\frac{3x}{12}=\frac{4y}{12}=\frac{6z}{12}\)

\(\Leftrightarrow\)\(\frac{x}{4}=\frac{y}{3}=\frac{z}{2}\)

\(\Leftrightarrow\)\(\frac{2x}{8}=\frac{y}{3}=\frac{5z}{10}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{2x}{8}=\frac{y}{3}=\frac{5z}{10}=\frac{2x-5z}{8-10}=\frac{-36}{-2}=18\)

Do đó : 

\(\frac{x}{4}=18\)\(\Rightarrow\)\(x=18.4=72\)

\(\frac{y}{3}=18\)\(\Rightarrow\)\(y=18.3=54\)

\(\frac{z}{2}=18\)\(\Rightarrow\)\(z=18.2=36\)

Vậy \(x=72\)\(;\)\(y=54\) và \(z=36\)

Chúc bạn học tốt ~ 

29 tháng 6 2018

2) Ta có: \(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có: 

\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{b+c+c+a+a+b}=\frac{a+b+c}{2.\left(a+b+c\right)}=\frac{1}{2}\)

\(\Rightarrow\frac{a}{b+c}=\frac{1}{2}\Rightarrow2a=b+c\)

\(\frac{b}{c+a}=\frac{1}{2}\Rightarrow2b=c+a\)

\(\frac{c}{a+b}=\frac{1}{2}\Rightarrow2c=a+b\)

Ta có: \(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{b+a}{b}.\frac{c+b}{c}.\frac{a+c}{a}=\frac{2c.2a.2b}{b.c.a}=8\)

Vậy \(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=8\)

23 tháng 6 2017

DỄ LẮM

hiệu số phần số thứ 3 và số thứ nhất là:

7 - 4 = 3 ( phần )

1 phần là : 

25 ; 3 = 25/3 

x là :

25/3 x 7 = 175/3

y là :

25/3 x 9 = 75 

z là : 

175/3 - 25 =100 /3