\(x+y+z=3\) P=\(x^2+z^2+y^2+xy+yz+xz\) minP=?

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2016

x2 + y2 + z2 = xy + yz + xz 

2x2 + 2y2 + 2z2 = 2xy + 2yz + 2xz

2x2 + 2y2 + 2z2 - 2xy - 2yz - 2xz = 0

x2 - 2xy + y2 + x2 - 2xz + z2 + y2 - 2yz + z2 = 0

(x - y)2 + (x - z)2 + (y - z)2 = 0 mà (x - y)2 ; (x - z)2 ; (y - z)2 đều ko âm

=> (x - y)2 = (x - z)2 = (y - z)2 = 0 => x - y = x - z = y - z = 0 => x = y = z

Chúc bạn học tốt ok

\(\text{Sử dụng AM-GM, ta có}\)

\(\left(x+y+z\right)^2\le3\left(x^2+y^2+z^2\right)\Rightarrow x+y+z\le\sqrt{3\left(x^2+y^2+z^2\right)}\)

\(xy+yz+xz\le x^2+y^2+z^2\)

\(\text{Cộng theo vế, ta được}\)

\(6=x+y+z+xy+yz+xz\le\sqrt{3\left(x^2+y^2+z^2\right)+x^2+y^2+z^2}\)

Suy ra\(x^2+y^2+z^2\ge3\)

12 tháng 2 2020

\(x^2+1\ge2x;y^2+1\ge2y;z^2+1\ge2z\)

\(\Rightarrow x^2+y^2+z^2+3\ge2x+2y+2z\Rightarrow\frac{x^2+y^2+z^2}{2}+\frac{3}{2}\ge x+y+z\)

\(x^2+y^2\ge2xy;y^2+z^2\ge2yz;z^2+x^2\ge2zx\)

\(\Rightarrow x^2+y^2+z^2\ge xy+yz+zx\)

Khi đó:\(\frac{3}{2}\left(x^2+y^2+z^2\right)+\frac{3}{2}\ge x+y+z+xy+yz+zx=6\)

\(\Rightarrow x^2+y^2+z^2+1\ge4\Rightarrow x^2+y^2+z^2\ge3\)

NV
8 tháng 5 2019

Ta có \(xy+xz+yz\le\frac{\left(x+y+z\right)^2}{3}\)

\(\Rightarrow x+y+z+\frac{\left(x+y+z\right)^2}{3}\ge6\)

\(\Rightarrow\left(x+y+z\right)^2+3\left(x+y+z\right)-18\ge0\)

\(\Rightarrow\left(x+y+z+6\right)\left(x+y+z-3\right)\ge0\)

\(\Rightarrow x+y+z-3\ge0\) (do \(x+y+z+6>0\))

\(\Rightarrow x+y+z\ge3\)

\(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\ge\frac{3^2}{3}=3\) (đpcm)

Dấu "=" xảy ra khi \(x=y=z=1\)

//Hoặc cách khác sử dụng AM-GM:

\(x^2+1\ge2x\) ; \(y^2+1\ge2y\); \(z^2+1\ge2z\);

\(x^2+y^2+z^2\ge xy+xz+yz\Rightarrow2x^2+2y^2+2z^2\ge2xy+2xz+2yz\)

Cộng vế với vế của 4 BĐT trên ta có:

\(3x^2+3y^2+3z^2+3\ge2\left(x+y+z+xy+xz+yz\right)=12\)

\(\Rightarrow3\left(x^2+y^2+z^2\right)\ge9\)

\(\Rightarrow x^2+y^2+z^2\ge3\)

Dấu "=" xảy ra khi \(x=y=z=1\)

9 tháng 6 2017

Đề bị sai kia bạn biểu thức thứ 3 đó

Áp dụng BĐT \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{9}{x+y+z}\) (bạn xem trên mạng đi có đó từ bđt cô si mà ra ) ta có:

\(\dfrac{1}{1+xy}+\dfrac{1}{1+yz}+\dfrac{1}{1+zx}\ge\dfrac{9}{3+xy+yz+zx}\ge\dfrac{9}{3+3}=\dfrac{3}{2}\)

(vì \(xy+yz+zx\le x^2+y^2+z^2\le3\))

Vậy Min P = 3/2 khi x=y=z=1

9 tháng 6 2017

à, mình viết nhầm là 1+zx

thanks bạn nhiềuvuivuivui

5 tháng 3 2019

\(x^2+y^2+z^2=xy+yz+xz\)

\(\Leftrightarrow2x^2+2y^2+2z^2=2xy+2yz+2xz\)

\(\Leftrightarrow\left(x^2+y^2-2xy\right)+\left(y^2+z^2-2yz\right)+\left(x^2+z^2-2xz\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

\(\Leftrightarrow.....\)

7 tháng 3 2019

dễ quá phát ơi

cho mình 9 k đúng đi phát

10 tháng 8 2017

Hình như sai đề

11 tháng 8 2017

thế ề như nào bạn