\(⋮\)6

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2018

\(P=\left(x+y\right)\left(y+z\right)\left(z+x\right)+xyz\)

\(=\left(xy+xz+y^2+yz\right)\left(z+x\right)+xyz\)

\(=xyz+x^2y+xz^2+x^2z+y^2z+xy^2+yz^2+xyz+xyz\)

\(=\left(xyz+x^2y+x^2z\right)+\left(xyz+xy^2+y^2z\right)+\left(xyz+xz^2+yz^2\right)\)

\(=x\left(xy+yz+zx\right)+y\left(xy+yz+zx\right)+z\left(xy+yz+zx\right)\)

\(=\left(x+y+z\right)\left(xy+yz+zx\right)\)

Mà \(x+y+z=20042004⋮6\)

=>\(P⋮6\)

Lại có; \(x+y+z⋮6\) nên trong 3 số phải có ít nhất 1 số chẵn

=>\(xyz⋮2\Rightarrow3xyz⋮6\)

=>\(P-3xyz⋮6\) (đpcm)

5 tháng 11 2016

xem lại đề; x = 1 -> đề sai

5 tháng 11 2016

Đề bài có lẽ bị sai , nếu thử x = 5 , y = 7 , z = 8 

25 tháng 9 2018

Ta có:

\(x^3+y^3+z^3=3xyz\left(gt\right)\)

\(\Rightarrow x^3+y^3+z^3-3xyz=0\)

\(\Rightarrow x^3+y^3+3xy\left(x+y\right)+z^3-3xy\left(x+y\right)-3xyz=0\)

\(\Rightarrow\left(x+y\right)^3+z^3-3xy\left(x+y+z\right)=0\)

\(\Rightarrow\left(x+y+z\right)^3-3z\left(x+y\right)\left(x+y+z\right)-3xy\left(x+y+z\right)=0\)

\(\Rightarrow\left(x+y+z\right)^3-\left(x+y+z\right)\left(3xy+3zx+3yz\right)=0\)

\(\Rightarrow\left(x+y+z\right)\left(x^2+y^2+z^2+2xy+2xz+2yz-3xy-3xz-3yz\right)=0\)

\(\Rightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)=0\)

\(\Rightarrow\dfrac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]=0\)

\(\Rightarrow\left[{}\begin{matrix}x+y+z=0\\\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}\left(x-y\right)^2\ge0\\\left(y-z\right)^2\ge0\\\left(z-x\right)^2\ge0\end{matrix}\right.\)

\(\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)

\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

\(\Rightarrow\left\{{}\begin{matrix}\left(x-y\right)^2=0\\\left(y-z\right)^2=0\\\left(z-x\right)^2=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x-y=0\\y-z=0\\z-x=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=y\\y=z\\z=x\end{matrix}\right.\)

\(\Rightarrow x=y=z\)

Xét trường hợp x = y = z, ta có:

\(P=\dfrac{xyz}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

\(P=\dfrac{x^3}{2x.2x.2x}\)

\(P=\dfrac{x^3}{8x^3}\)

\(P=\dfrac{1}{8}\)

Xét trường hợp x + y + z = 0, ta có:

\(\left\{{}\begin{matrix}x=-\left(y+z\right)\\y=-\left(x+z\right)\\z=-\left(y+x\right)\end{matrix}\right.\)

\(\Rightarrow P=\dfrac{-\left(x+y\right)\left(y+z\right)\left(z+x\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

\(\Rightarrow P=-1\)

13 tháng 11 2018

Ta có: x+ y3 + z3 = 3xyz

x3 + y3 + z3 - 3xyz = 0

x3 + 3x2y + 3xy2 + y+ z3 - 3xy(x + y) - 3xyz = 0

(x + y)3 + z2 - 3xy(x + y + z) = 0

(x + y + z)[(x + y)2 - (x + y)z + z2] - 3xy(x + y + z) = 0

(x + y + z)(x2 + 2xy + y2 - xz - yz + z2) - 3xy(x + y + z) = 0

(x + y + z)(x2 + 2xy + y2 - xz - yz + z2 - 3xy) = 0

(x + y + z)(x2 + y2 + z2 - xz - yz - xy) = 0

=> x + y + z = 0 hoặc x2 + y2 + z2 - xz - yz - xy = 0

+) Với x + y + z = 0 

<=> x + y = -z, x + z = -y, y + z = -x

Thay x + y = -z, x + z = -y, y + z = -x vào P, ta có:

\(P=\frac{xyz}{\left(-z\right)\left(-x\right)\left(-y\right)}=-1\)

+) Với x2 + y2 + z2 - xz - yz - xy = 0

=> 2x2 + 2y2 + 2z2 - 2xz - 2yz - 2xy = 0

=> (x2 - 2xy + y2) + (x2 - 2xz + z2) + (y2 - 2yz + z2) = 0

=> (x - y)2 + (x - z)2 + (y - z)2 = 0

=> (x - y)2 = 0 và (x - z)2 = 0 và (y - z)2 = 0

=> x = y và x = z và y = z

=> x = y = z

Thay x = y = z vào P, ta có:

\(P=\frac{xxx}{\left(x+x\right)\left(x+x\right)\left(x+x\right)}=\frac{x^3}{\left(2x\right)^3}=\frac{x^3}{8x^3}=\frac{1}{8}\)

26 tháng 3 2019

Có: \(x+y+z=0\)

CM được: \(x^3+y^3+z^3=3xyz\)

Có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

\(\Leftrightarrow xy+xz+yz=0\)

\(\Leftrightarrow\left(xy+xz+yz\right)^3=0\)

\(\Leftrightarrow x^3y^3+x^3z^3+y^3z^3+3\left(xy+yz\right)\left(xz+yz\right)\left(xz+xy\right)=0\)(từ CT: (a+b+c)^3=a^3+b^3+c^3+3(a+b)(a+c)(b+c)

\(\Leftrightarrow x^3y^3+x^3z^3+y^3z^3+3xyz\left(x+y\right)\left(y+z\right)\left(x+z\right)=0\)(Thế x+y=-z ; y+z=-x và x+z=-y)

\(\Leftrightarrow x^3y^3+x^3z^3+y^3z^3=3x^2y^2z^2\)

\(\Leftrightarrow2\left(x^3y^3+x^3z^3+y^3z^3\right)=6x^2y^2z^2\)(1)

Có: \(x^3+y^3+z^3=3xyz\)

\(\Leftrightarrow x^6+y^6+z^6+2\left(x^3y^3+x^3z^3+y^3z^3\right)=9x^2y^2z^2\)(2)

Từ (1) và (2):

Có: \(x^6+y^6+z^6=3x^2y^2z^2\)

Cho nên: \(\frac{x^6+y^6+z^6}{x^3+y^3+z^3}=\frac{3x^2y^2z^2}{3xyz}=xyz\)

1 tháng 7 2020

bằng gì kệ màylởp 3 đó híhí

2 tháng 10 2018

\(x^3+y^3+z^3=3xyz\)

\(\Rightarrow x^3+y^3+z^3-3xyz=0\)

\(\Rightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)

+, \(x+y+z=0\)

\(\Rightarrow x+y=-z;x+z=-y;y+z=-x\)

\(\Rightarrow P=\frac{xyz}{-xyz}=-1\)

+, \(x^2+y^2+z^2-xy-yz-zx=0\)

\(\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

\(\Rightarrow x=y=z\)

\(\Rightarrow P=\frac{x^3}{2x\cdot2x\cdot2x}=\frac{1}{8}\)

9 tháng 3 2016

Bài này có hai giá trị,  \(P=-1\)  hoặc  \(P=\frac{1}{8}\)

10 tháng 3 2016

x^3 + y^3 + z^3 = 3xyz
<=> (x + y + z)(x^2 + y^2 + z^2 -xy -yz - zx) = 0
vì x+y+z khác 0 => x^2 + y^2 + z^2 -xy -yz - zx = 0
nhân 2 vế cho 2 => (x - y)^2 + (y - z)^2 + (z -x)^2 = 0
=> x = y = z
thay vào P ta dc: P= xxx/(2x.2x.2x) = x^3/8x^3 = 1/8

29 tháng 1 2019

Những hằng đẳng thức đáng nhớ

5 tháng 10 2017

\(x+y-z=0\)

\(\Leftrightarrow x+y=z\)

Lập phương 2 vế ta có:

\(\left(x+y\right)^3=z^3\)

\(\Leftrightarrow x^3+3x^2y+3xy^2+y^3=z^3\)

\(\Leftrightarrow x^3+y^3-z^3=-3x^2y-3xy^2\)

\(\Leftrightarrow x^3+y^3-z^3=-3xy\left(x+y\right)\)

Thay \(x+y=z\) vào biểu thức ta được

\(\Leftrightarrow x^3+y^3-z^3=-3xyz\)(đpcm)