Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(x^3+y^3+z^3=3xyz\left(gt\right)\)
\(\Rightarrow x^3+y^3+z^3-3xyz=0\)
\(\Rightarrow x^3+y^3+3xy\left(x+y\right)+z^3-3xy\left(x+y\right)-3xyz=0\)
\(\Rightarrow\left(x+y\right)^3+z^3-3xy\left(x+y+z\right)=0\)
\(\Rightarrow\left(x+y+z\right)^3-3z\left(x+y\right)\left(x+y+z\right)-3xy\left(x+y+z\right)=0\)
\(\Rightarrow\left(x+y+z\right)^3-\left(x+y+z\right)\left(3xy+3zx+3yz\right)=0\)
\(\Rightarrow\left(x+y+z\right)\left(x^2+y^2+z^2+2xy+2xz+2yz-3xy-3xz-3yz\right)=0\)
\(\Rightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)=0\)
\(\Rightarrow\dfrac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}x+y+z=0\\\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\end{matrix}\right.\)
Vì \(\left\{{}\begin{matrix}\left(x-y\right)^2\ge0\\\left(y-z\right)^2\ge0\\\left(z-x\right)^2\ge0\end{matrix}\right.\)
\(\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)
Mà \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x-y\right)^2=0\\\left(y-z\right)^2=0\\\left(z-x\right)^2=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x-y=0\\y-z=0\\z-x=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=y\\y=z\\z=x\end{matrix}\right.\)
\(\Rightarrow x=y=z\)
Xét trường hợp x = y = z, ta có:
\(P=\dfrac{xyz}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
\(P=\dfrac{x^3}{2x.2x.2x}\)
\(P=\dfrac{x^3}{8x^3}\)
\(P=\dfrac{1}{8}\)
Xét trường hợp x + y + z = 0, ta có:
\(\left\{{}\begin{matrix}x=-\left(y+z\right)\\y=-\left(x+z\right)\\z=-\left(y+x\right)\end{matrix}\right.\)
\(\Rightarrow P=\dfrac{-\left(x+y\right)\left(y+z\right)\left(z+x\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
\(\Rightarrow P=-1\)
Ta có: x3 + y3 + z3 = 3xyz
x3 + y3 + z3 - 3xyz = 0
x3 + 3x2y + 3xy2 + y3 + z3 - 3xy(x + y) - 3xyz = 0
(x + y)3 + z2 - 3xy(x + y + z) = 0
(x + y + z)[(x + y)2 - (x + y)z + z2] - 3xy(x + y + z) = 0
(x + y + z)(x2 + 2xy + y2 - xz - yz + z2) - 3xy(x + y + z) = 0
(x + y + z)(x2 + 2xy + y2 - xz - yz + z2 - 3xy) = 0
(x + y + z)(x2 + y2 + z2 - xz - yz - xy) = 0
=> x + y + z = 0 hoặc x2 + y2 + z2 - xz - yz - xy = 0
+) Với x + y + z = 0
<=> x + y = -z, x + z = -y, y + z = -x
Thay x + y = -z, x + z = -y, y + z = -x vào P, ta có:
\(P=\frac{xyz}{\left(-z\right)\left(-x\right)\left(-y\right)}=-1\)
+) Với x2 + y2 + z2 - xz - yz - xy = 0
=> 2x2 + 2y2 + 2z2 - 2xz - 2yz - 2xy = 0
=> (x2 - 2xy + y2) + (x2 - 2xz + z2) + (y2 - 2yz + z2) = 0
=> (x - y)2 + (x - z)2 + (y - z)2 = 0
=> (x - y)2 = 0 và (x - z)2 = 0 và (y - z)2 = 0
=> x = y và x = z và y = z
=> x = y = z
Thay x = y = z vào P, ta có:
\(P=\frac{xxx}{\left(x+x\right)\left(x+x\right)\left(x+x\right)}=\frac{x^3}{\left(2x\right)^3}=\frac{x^3}{8x^3}=\frac{1}{8}\)
Có: \(x+y+z=0\)
CM được: \(x^3+y^3+z^3=3xyz\)
Có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
\(\Leftrightarrow xy+xz+yz=0\)
\(\Leftrightarrow\left(xy+xz+yz\right)^3=0\)
\(\Leftrightarrow x^3y^3+x^3z^3+y^3z^3+3\left(xy+yz\right)\left(xz+yz\right)\left(xz+xy\right)=0\)(từ CT: (a+b+c)^3=a^3+b^3+c^3+3(a+b)(a+c)(b+c)
\(\Leftrightarrow x^3y^3+x^3z^3+y^3z^3+3xyz\left(x+y\right)\left(y+z\right)\left(x+z\right)=0\)(Thế x+y=-z ; y+z=-x và x+z=-y)
\(\Leftrightarrow x^3y^3+x^3z^3+y^3z^3=3x^2y^2z^2\)
\(\Leftrightarrow2\left(x^3y^3+x^3z^3+y^3z^3\right)=6x^2y^2z^2\)(1)
Có: \(x^3+y^3+z^3=3xyz\)
\(\Leftrightarrow x^6+y^6+z^6+2\left(x^3y^3+x^3z^3+y^3z^3\right)=9x^2y^2z^2\)(2)
Từ (1) và (2):
Có: \(x^6+y^6+z^6=3x^2y^2z^2\)
Cho nên: \(\frac{x^6+y^6+z^6}{x^3+y^3+z^3}=\frac{3x^2y^2z^2}{3xyz}=xyz\)
\(x^3+y^3+z^3=3xyz\)
\(\Rightarrow x^3+y^3+z^3-3xyz=0\)
\(\Rightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)
+, \(x+y+z=0\)
\(\Rightarrow x+y=-z;x+z=-y;y+z=-x\)
\(\Rightarrow P=\frac{xyz}{-xyz}=-1\)
+, \(x^2+y^2+z^2-xy-yz-zx=0\)
\(\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
\(\Rightarrow x=y=z\)
\(\Rightarrow P=\frac{x^3}{2x\cdot2x\cdot2x}=\frac{1}{8}\)
x^3 + y^3 + z^3 = 3xyz
<=> (x + y + z)(x^2 + y^2 + z^2 -xy -yz - zx) = 0
vì x+y+z khác 0 => x^2 + y^2 + z^2 -xy -yz - zx = 0
nhân 2 vế cho 2 => (x - y)^2 + (y - z)^2 + (z -x)^2 = 0
=> x = y = z
thay vào P ta dc: P= xxx/(2x.2x.2x) = x^3/8x^3 = 1/8
\(x+y-z=0\)
\(\Leftrightarrow x+y=z\)
Lập phương 2 vế ta có:
\(\left(x+y\right)^3=z^3\)
\(\Leftrightarrow x^3+3x^2y+3xy^2+y^3=z^3\)
\(\Leftrightarrow x^3+y^3-z^3=-3x^2y-3xy^2\)
\(\Leftrightarrow x^3+y^3-z^3=-3xy\left(x+y\right)\)
Thay \(x+y=z\) vào biểu thức ta được
\(\Leftrightarrow x^3+y^3-z^3=-3xyz\)(đpcm)
\(P=\left(x+y\right)\left(y+z\right)\left(z+x\right)+xyz\)
\(=\left(xy+xz+y^2+yz\right)\left(z+x\right)+xyz\)
\(=xyz+x^2y+xz^2+x^2z+y^2z+xy^2+yz^2+xyz+xyz\)
\(=\left(xyz+x^2y+x^2z\right)+\left(xyz+xy^2+y^2z\right)+\left(xyz+xz^2+yz^2\right)\)
\(=x\left(xy+yz+zx\right)+y\left(xy+yz+zx\right)+z\left(xy+yz+zx\right)\)
\(=\left(x+y+z\right)\left(xy+yz+zx\right)\)
Mà \(x+y+z=20042004⋮6\)
=>\(P⋮6\)
Lại có; \(x+y+z⋮6\) nên trong 3 số phải có ít nhất 1 số chẵn
=>\(xyz⋮2\Rightarrow3xyz⋮6\)
=>\(P-3xyz⋮6\) (đpcm)