Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt a=x-2; b=y-2; c=z-2. Phải chứng minh abc =<1
Thật vậy, từ \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)ta có:
\(\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}=1\)
Theo BĐT Cauchy ta có:
\(\frac{1}{a+2}=\left(\frac{1}{2}-\frac{1}{b+2}\right)+\left(\frac{1}{2}-\frac{1}{c+2}\right)=\frac{1}{2}\left(\frac{b}{b+2}+\frac{c}{c+2}\right)\ge\sqrt{\frac{bc}{\left(b+2\right)\left(c+2\right)}}\left(1\right)\)
tương tự \(\hept{\begin{cases}\frac{1}{b+2}\ge\sqrt{\frac{ac}{\left(a+2\right)\left(c+2\right)}}\left(2\right)\\\frac{1}{c+2}\ge\sqrt{\frac{ab}{\left(a+2\right)\left(b+2\right)}}\left(3\right)\end{cases}}\)
Nhân các vế của (1)(2)(3) ta được đpcm
Dấu "=" xảy ra <=> a=b=c hay x=y=z=3
Ta co:
\(A=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2+\left(z+\frac{1}{z}\right)^2\ge\frac{\left(x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}{3}\ge\frac{\left(1+\frac{9}{x+y+z}\right)^2}{3}=\frac{100}{3}\)
Dau '=' xay ra khi \(x=y=z=\frac{1}{3}\)
Vay \(A_{min}=\frac{100}{3}\)khi \(x=y=z=\frac{1}{3}\)
Theo AM - GM và Bunhiacopski ta có được
\(x^2+y^2\ge\frac{\left(x+y\right)^2}{2};\frac{1}{x^2}+\frac{1}{y^2}\ge\frac{2}{xy}\ge\frac{8}{\left(x+y\right)^2}\)
Khi đó \(LHS\ge\left[\frac{\left(x+y\right)^2}{2}+z^2\right]\left[\frac{8}{\left(x+y\right)^2}+\frac{1}{z^2}\right]\)
\(\)\(=\left[\frac{1}{2}+\left(\frac{z}{x+y}\right)^2\right]\left[8+\left(\frac{x+y}{z}\right)^2\right]\)
Đặt \(t=\frac{z}{x+y}\ge1\)
Khi đó:\(LHS\ge\left(\frac{1}{2}+t^2\right)\left(8+\frac{1}{t^2}\right)=8t^2+\frac{1}{2t^2}+5\)
\(=\left(\frac{1}{2t^2}+\frac{t^2}{2}\right)+\frac{15t^2}{2}+5\ge\frac{27}{2}\)
Vậy ta có đpcm
Ta có:
\(VT-VP=\frac{\left(x^2+y^2\right)\left(\Sigma xy\right)\left(\Sigma x\right)\left[z\left(x+y\right)-xy\right]\left(z-x-y\right)}{x^2y^2z^2\left(x+y\right)^2}+\frac{\left(x-y\right)^2\left(2x+y\right)^2\left(x+2y\right)^2}{2x^2y^2\left(x+y\right)^2}\ge0\)
Vì \(z\left(x+y\right)-xy\ge\left(x+y\right)^2-xy\ge4xy-xy>0\)
Đặt \(\hept{\begin{cases}a=x-2\\b=y-2\\c=z-2\end{cases}}\left(a,b,c>0\right)\)
Lúc đó giả thiết được viết lại thành \(\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}=1\)và ta cần chứng minh \(abc\le1\)
Ta có: \(\frac{1}{a+2}=1-\frac{1}{b+2}-\frac{1}{c+2}=\frac{1}{2}-\frac{1}{b+2}+\frac{1}{2}-\frac{1}{c+2}\)
\(=\frac{b}{2\left(b+2\right)}+\frac{c}{2\left(c+2\right)}\ge2\sqrt{\frac{bc}{4\left(b+2\right)\left(c+2\right)}}\)(Theo bất đẳng thức Cauchy cho 2 số dương) (1)
Hoàn toàn tương tự: \(\frac{1}{b+2}\ge2\sqrt{\frac{ca}{4\left(c+2\right)\left(a+2\right)}}\)(2) ; \(\frac{1}{c+2}\ge2\sqrt{\frac{ab}{4\left(a+2\right)\left(b+2\right)}}\)(3)
Nhân theo vế 3 bất đẳng thức (1), (2), (3), ta được:
\(\frac{1}{\left(a+2\right)\left(b+2\right)\left(c+2\right)}\ge\frac{abc}{\sqrt{\left(a+2\right)^2\left(b+2\right)^2\left(c+2\right)^2}}\)
\(\Leftrightarrow\frac{1}{\left(a+2\right)\left(b+2\right)\left(c+2\right)}\ge\frac{abc}{\left(a+2\right)\left(b+2\right)\left(c+2\right)}\Leftrightarrow abc\le1\)(đpcm)
Đẳng thức xảy ra khi \(x=y=z=3\)
Đặt \(\left(x-2,y-2.z-2\right)=\left(a,b,c\right)\) (a, b, c > 0).
Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\Leftrightarrow\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}=1\)
\(\Leftrightarrow\frac{\left(ab+bc+ca\right)+4\left(a+b+c\right)+12}{abc+2\left(ab+bc+ca\right)+4\left(a+b+c\right)+8}=1\)
\(\Leftrightarrow abc+ab+bc+ca=4\).
Nếu \(abc>1\Rightarrow ab+bc+ca\ge3\sqrt[3]{\left(abc\right)^2}>3\Rightarrow abc+ab+bc+ca>4\) (vô lí).
Vậy \(\left(x-2\right)\left(y-2\right)\left(z-2\right)=abc\le1\).
\(x^3+3x^2+3x+1+y^3+3y^3+3y+1+x+y+2=0\)
\(\Leftrightarrow\left(x+1\right)^3+\left(y+1\right)^3+x+y+2=0\)
\(\Leftrightarrow\left(x+y+2\right)\left(\left(x+1\right)^2+\left(y+1\right)^2-\left(x+1\right)\left(y+1\right)\right)+\left(x+y+2\right)=0\)
\(\Leftrightarrow\left(x+y+2\right)\left(\left(x+1\right)^2+\left(y+1\right)^2-\left(x+1\right)\left(y+1\right)+1\right)=0\)
\(\Leftrightarrow x+y+2=0\)
(phần trong ngoặc \(\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\frac{\left(y+1\right)^2}{4}+\frac{3\left(y+1\right)^2}{4}+1\)
\(=\left(x+1-\frac{y+1}{4}\right)^2+\frac{3\left(y+1\right)^2}{4}+1\) luôn dương)
\(\Rightarrow x+y=-2\)
Mà \(xy>0\Rightarrow\left\{{}\begin{matrix}x< 0\\y< 0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}-x>0\\-y>0\end{matrix}\right.\)
Ta có: \(\frac{1}{-x}+\frac{1}{-y}\ge\frac{4}{-\left(x+y\right)}=2\) \(\Leftrightarrow\frac{1}{x}+\frac{1}{y}\le-2\) (đpcm)
Dấu "=" xảy ra khi và chỉ khi \(x=y=-1\)
2/ \(x;y;z\ne0\)
\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)
\(\Leftrightarrow\frac{x+y}{xy}+\frac{1}{z}-\frac{1}{x+y+z}=0\)
\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y}{xz+yz+z^2}=0\)
\(\Leftrightarrow\left(x+y\right)\left(\frac{1}{xy}+\frac{1}{xz+yz+z^2}\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left(\frac{xy+yz+xz+z^2}{xyz\left(x+y+z\right)}\right)=0\)
\(\Leftrightarrow\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz\left(x+y+z\right)}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-y\\y=-z\\z=-x\end{matrix}\right.\) dù trường hợp nào thì thay vào ta đều có \(B=0\)
3/ \(\Leftrightarrow mx-2x+my-y-1=0\)
\(\Leftrightarrow m\left(x+y\right)-\left(2x+y+1\right)=0\)
Gọi \(A\left(x_0;y_0\right)\) là điểm cố định mà d đi qua
\(\Leftrightarrow\left\{{}\begin{matrix}x_0+y_0=0\\2x_0+y_0+1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_0=-1\\y_0=1\end{matrix}\right.\)
Vậy d luôn đi qua \(A\left(-1;1\right)\) với mọi m
Bài 2: Ta có: x, y, z không âm và \(x+y+z=\frac{3}{2}\)nên \(0\le x\le\frac{3}{2}\Rightarrow2-x>0\)
Áp dụng bất đẳng thức AM - GM dạng \(ab\le\frac{\left(a+b\right)^2}{4}\), ta được: \(x+2xy+4xyz=x+4xy\left(z+\frac{1}{2}\right)\le x+4x.\frac{\left(y+z+\frac{1}{2}\right)^2}{4}=x+x\left(2-x\right)^2\)
Ta cần chứng minh \(x+x\left(2-x\right)^2\le2\Leftrightarrow\left(2-x\right)\left(x-1\right)^2\ge0\)*đúng*
Đẳng thức xảy ra khi \(\left(x,y,z\right)=\left(1,\frac{1}{2},0\right)\)
Bài 3: Áp dụng đánh giá quen thuộc \(4ab\le\left(a+b\right)^2\), ta có: \(2\le\left(x+y\right)^3+4xy\le\left(x+y\right)^3+\left(x+y\right)^2\)
Đặt x + y = t thì ta được: \(t^3+t^2-2\ge0\Leftrightarrow\left(t-1\right)\left(t^2+2t+2\right)\ge0\Rightarrow t\ge1\)(dễ thấy \(t^2+2t+2>0\forall t\))
\(\Rightarrow x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\ge\frac{1}{2}\)
\(P=3\left(x^4+y^4+x^2y^2\right)-2\left(x^2+y^2\right)+1=3\left[\frac{3}{4}\left(x^2+y^2\right)^2+\frac{1}{4}\left(x^2-y^2\right)^2\right]-2\left(x^2+y^2\right)+1\ge\frac{9}{4}\left(x^2+y^2\right)^2-2\left(x^2+y^2\right)+1\)\(=\frac{9}{4}\left[\left(x^2+y^2\right)^2+\frac{1}{4}\right]-2\left(x^2+y^2\right)+\frac{7}{16}\ge\frac{9}{4}.2\sqrt{\left(x^2+y^2\right)^2.\frac{1}{4}}-2\left(x^2+y^2\right)+\frac{7}{16}=\frac{9}{4}\left(x^2+y^2\right)-2\left(x^2+y^2\right)+\frac{7}{16}=\frac{1}{4}\left(x^2+y^2\right)+\frac{7}{16}\ge\frac{1}{8}+\frac{7}{16}=\frac{9}{16}\)Đẳng thức xảy ra khi x = y = 1/2
Đặt x-2=a; y-2=b; z-2=c (a,b,c>0)
Ta có: \(\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}=1\)
<=>\(\frac{1}{a+2}=1-\frac{1}{b+2}-\frac{1}{c+2}\Leftrightarrow\frac{1}{a+2}=\frac{1}{2}-\frac{1}{b+2}+\frac{1}{2}-\frac{1}{c+2}\)
<=>\(\frac{1}{a+2}=\frac{b}{2\left(b+2\right)}+\frac{c}{2\left(c+2\right)}\ge2\sqrt{\frac{bc}{4\left(b+2\right)\left(c+2\right)}}=\sqrt{\frac{bc}{\left(b+2\right)\left(c+2\right)}}\left(1\right)\)
Tương tự ta cũng có: \(\frac{1}{b+2}\ge\sqrt{\frac{ca}{\left(c+2\right)\left(a+2\right)}}\left(2\right);\frac{1}{c+2}\ge\sqrt{\frac{ab}{\left(a+2\right)\left(b+2\right)}}\left(3\right)\)
Nhân (1),(2),(3) vế theo vế ta được:
\(\frac{1}{\left(a+2\right)\left(b+2\right)\left(c+2\right)}\ge\sqrt{\frac{\left(abc\right)^2}{\left[\left(a+2\right)\left(b+2\right)\left(c+2\right)\right]^2}}\)
<=> \(\frac{1}{\left(a+2\right)\left(b+2\right)\left(c+2\right)}\ge\frac{abc}{\left(a+2\right)\left(b+2\right)\left(c+2\right)}\)
\(\Leftrightarrow abc\le1\Leftrightarrow\left(x-2\right)\left(y-2\right)\left(z-2\right)\le1\) (đpcm)
Dấu "=" xảy ra khi a=b=c=3
Chia hai vế của cho xyz khác 0, ta cần chứng minh:
\(\left(1-\frac{2}{x}\right)\left(1-\frac{2}{y}\right)\left(1-\frac{2}{z}\right)\le\frac{1}{xyz}\)
Đặt \(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)\rightarrow\left(a;b;c\right)\). Bài toán trở thành:
Cho 0 <a,b,c \(< \frac{1}{2}\) thỏa mãn \(a+b+c=1\). Chứng minh rằng:
\(\left(1-2a\right)\left(1-2b\right)\left(1-2c\right)\le abc\)
\(\Leftrightarrow\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)\le abc\)
BĐT đến đây trở về dạng quen thuộc! Hoặc không thì nó hiển nhiên đúng theo BĐT Schur