Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\frac{x}{2}=\frac{y}{4}\)
\(\Rightarrow\frac{x^2}{4}=\frac{y^2}{16}=\frac{x^2+y^2}{20}=\frac{2000}{20}=100\)
\(\Rightarrow\orbr{\begin{cases}x=-20\\x=20\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}y=-40\\y=40\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}z=-50\\z=50\end{cases}}\)
b/ \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2y-4}{6}=\frac{3z-9}{12}=\frac{x-2y+3z-1+4-9}{2-6+12}=1\)
\(\Rightarrow\hept{\begin{cases}x=3\\y=5\\z=7\end{cases}}\)
\(\hept{\begin{cases}xyz=12\\x^3+y^3+z^3=36\end{cases}}\Leftrightarrow x^3+y^3+z^3=3xyz\)
\(\Leftrightarrow x^3+y^3+z^3-3xyz=0\)
\(\Leftrightarrow\left(x+y\right)^3-3xy\left(x+y\right)-3xyz+z^3=0\)
\(\Leftrightarrow\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)=0\)
\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)=0\)
\(\Leftrightarrow x=y=z\left(x+y+z>0\right)\)
Thay x=y=z vào r tính thôi bạn
1 mảnh đất HCN có chu vi là 120m,có chiều rộng bằng \(\frac{3}{5}\)chiều dài.
a Tính diện tích mảnh đất đó
b Người ta chia mảnh vườn thành 2 khu.Biết\(\frac{1}{2}\)
diện tích trồng cây ăn quả bằng \(\frac{2}{5}\)diện tích khu trồng hoa.Tính diện tích mỗi khu.
ĐẶt \(A=\frac{25x}{y+z}+25+\frac{4y}{z+x}+4+\frac{9z}{x+y}+9\)
\(A=\left(x+y+z\right)\left(\frac{25}{y+z}+\frac{4}{z+x}+\frac{9}{x+y}\right)\)
Chứng minh Bất đẳng thức phụ \(\frac{m^2}{a}+\frac{n^2}{b}+\frac{p^2}{c}\ge\frac{\left(m+n+p\right)^2}{a+b+c}\forall a,,b,c>0\)rồi áp dụng, ta có
\(A\ge\left(x+y+z\right)\frac{\left(5+2+3\right)^2}{2\left(x+y+z\right)}=50\)
\(\Rightarrow\frac{25x}{y+z}+\frac{4y}{z+x}+\frac{9z}{x+y}\ge12\forall x,y,z>0\)
\(\hept{\begin{cases}\frac{x}{3}+\frac{y}{12}-\frac{z}{4}=1\\\frac{x}{10}+\frac{y}{5}+\frac{z}{3}=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}4x+y-3z=12\\3x+6y+10z=30\end{cases}}\)
\(\Rightarrow7\left(x+y+z\right)=42\)
\(\Leftrightarrow x+y+z=6\)