Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tra mạng đi hỏi nhiều haha!!!
:V chưởng nhờ anh HUY chỉ cho hihi
nó học giỏi toán lắm đó hehe!!!!
nvcl
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a-b}{x}=\frac{b-c}{y}=\frac{a-c}{z}=\frac{\left(a-b\right)+\left(b-c\right)+\left(a-c\right)}{x+y+z}=\frac{2\left(a-c\right)}{x+y+z}\)
\(\Leftrightarrow\frac{a-c}{z}=\frac{2\left(a-c\right)}{x+y+z}\)
\(\Leftrightarrow x+y+z=2z\)
Do x+y+z lẻ và 2z là số chẵn nên không tồn tại x,y,z=> Đề sai :))
Áp dụng tính chất dãy tỉ số bằng nhau ta có : a-b/x = b-c/y = a-c/z = a-b+b-c+c-a/x+y+z = 0
=> a-b=0 ; b-c=0 ; c-a=0
=> a=b=c
Tk mk nha
Câu hỏi của Lê Xuân Phú - Toán lớp 7 - Học toán với OnlineMath
Lời giải:
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
\(\Leftrightarrow \frac{y+z}{x}-1=\frac{z+x}{y}-1=\frac{x+y}{z}-1\)
\(\Leftrightarrow \frac{y+z}{x}=\frac{z+x}{y}=\frac{x+y}{z}\)
\(\Leftrightarrow \frac{y+z}{x}+1=\frac{z+x}{y}+1=\frac{x+y}{z}+1\)
\(\Leftrightarrow \frac{y+z+x}{x}=\frac{z+x+y}{y}=\frac{x+y+z}{z}(*)\)
Nếu \(x+y+z=0\)
\(\Rightarrow x+y=-z; y+z=-x; z+x=-y\)
\(\Rightarrow B=(1+\frac{x}{y})(1+\frac{y}{z})(1+\frac{z}{x})=\frac{(x+y)(y+z)(z+x)}{yzx}=\frac{(-z)(-x)(-y)}{yzx}=-1\)
Nếu $x+y+z\neq 0$. Khi đó từ $(*)$ suy ra $x=y=z$
\(\Rightarrow B=(1+\frac{x}{y})(1+\frac{y}{z})(1+\frac{z}{x})=(1+\frac{x}{x})(1+\frac{x}{x})(1+\frac{x}{x})=(1+1)(1+1)(1+1)=8\)
Vậy................
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
\(\Leftrightarrow\frac{y+z-x}{x}+2=\frac{z+x-y}{y}+2=\frac{x+y-z}{z}+2\)
\(\Leftrightarrow\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\)
\(\Rightarrow x=y=z\)
\(\Rightarrow\frac{x}{y}=1;\frac{y}{z}=1;\frac{z}{x}=1\)
\(\Rightarrow B=\left(1+1\right)\left(1+1\right)\left(1+1\right)=2^3=8\)
1) ADTCDTSBN
có: \(\frac{x}{3}=\frac{y}{5}=\frac{z}{-7}=\frac{x-y-z}{3-5+7}=\frac{20}{5}=4.\)
=> ...
giả sử
\(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)
ta có:\(\text{}\text{}\text{}\text{}\text{}\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}=\frac{bxz-cyx}{ax}=\frac{cxy-ayz}{by}=\frac{ayz-bxz}{cz}=\frac{bxz-cyx+cxy-ayz+ayz-bxz}{ax+by+cz}=0\)
\(\frac{bz-cy}{a}=0\Rightarrow bz=cy\Rightarrow\frac{z}{c}=\frac{y}{b}\left(1\right)\)
\(\frac{cx-az}{b}=0\Rightarrow cx=az\Rightarrow\frac{z}{c}=\frac{x}{a}\left(2\right)\)
\(\frac{ay-bx}{c}=0\Rightarrow ay=bx\Rightarrow\frac{x}{a}=\frac{y}{b}\left(3\right)\)
từ (1),(2),(3) => \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
=> điều giả sử đúng => đpcm
Ta có : \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
=> \(\frac{y+z}{x}-1=\frac{z+x}{y}-1=\frac{x+y}{z}-1\)
=> \(\frac{y+z}{x}=\frac{z+x}{y}=\frac{x+y}{z}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{y+z}{x}=\frac{x+z}{y}=\frac{x+y}{z}=\frac{y+z+x+z+x+y}{x+y+z}=2\)
+) \(\frac{y+z}{x}=2\)
=> y+z=2x
+) \(\frac{x+z}{y}=2\)
=>x+z=2y
+)\(\frac{x+y}{z}=2\)
=> x+y=2z
Mà B= ( 1+x/y)(1+y/z) (1+z/x)
B= \(\frac{x+y}{y}.\frac{y+z}{z}.\frac{z+x}{x}\)
B= \(\frac{2z.2x.2y}{xyz}\)
B= 8
~ Chúc bạn học tốt ~
Tích và kết bạn với mình nha!
Ta có: \(B=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}\)
Lại có:
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
\(\Leftrightarrow\frac{y+z-x}{x}+2=\frac{z+x-y}{y}+2=\frac{x+y-z}{z}+2\)
\(\Leftrightarrow\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\)
(+) Xét x + y + z = 0\(\Rightarrow\hept{\begin{cases}x+y=-z\\y+z=-x\\z+x=-y\end{cases}}\)
Thay vào ta có: \(B=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}=\frac{-z}{y}.\frac{-x}{z}.\frac{-y}{x}=\frac{-xyz}{xyz}=-1\)
(+) Xét x + y + z \(\ne\) 0
Tương tự như trên ta có: \(\hept{\begin{cases}x+y=2z\\y+z=2x\\z+x=2y\end{cases}}\)
Thay vào ta có: \(B=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}=\frac{2z}{y}.\frac{2x}{z}.\frac{2y}{x}=\frac{8xyz}{xyz}=8\)
Vậy \(\hept{\begin{cases}B=-1\Leftrightarrow x+y+z=0\\B=8\Leftrightarrow x+y=y+z=z+x\Leftrightarrow x=y=z\end{cases}}\)