Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta thấy $\frac{x}{y^2+z^2}=\frac{x}{1-x^2}$
Ta sẽ chứng minh BĐT phụ sau:
$\frac{x}{1-x^2}\geq \frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{2}(3x^2-1)$
$\Leftrightarrow x(\sqrt{3}x-1)^2(\sqrt{3}x+2)\geq 0$ (luôn đúng với mọi $x>0$
Hoàn toàn tương tự:
$\frac{y}{x^2+z^2}=\frac{y}{1-y^2}\geq \frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{2}(3y^2-1)$
$\frac{z}{x^2+y^2}=\frac{z}{1-z^2}\geq \frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{2}(3z^2-1)$
Cộng theo vế và thu gọn:
$P\geq \frac{3\sqrt{3}}{2}+\frac{\sqrt{3}}{2}.3(x^2+y^2+z^2-1)$
Hay $P\geq \frac{3\sqrt{3}}{2}$
Ta có đpcm.
Dấu "=" xảy ra khi $x=y=z=\frac{1}{\sqrt{3}}$
Lời giải:
Ta thấy $\frac{x}{y^2+z^2}=\frac{x}{1-x^2}$
Ta sẽ chứng minh BĐT phụ sau:
$\frac{x}{1-x^2}\geq \frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{2}(3x^2-1)$
$\Leftrightarrow x(\sqrt{3}x-1)^2(\sqrt{3}x+2)\geq 0$ (luôn đúng với mọi $x>0$
Hoàn toàn tương tự:
$\frac{y}{x^2+z^2}=\frac{y}{1-y^2}\geq \frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{2}(3y^2-1)$
$\frac{z}{x^2+y^2}=\frac{z}{1-z^2}\geq \frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{2}(3z^2-1)$
Cộng theo vế và thu gọn:
$P\geq \frac{3\sqrt{3}}{2}+\frac{\sqrt{3}}{2}.3(x^2+y^2+z^2-1)$
Hay $P\geq \frac{3\sqrt{3}}{2}$
Ta có đpcm.
Dấu "=" xảy ra khi $x=y=z=\frac{1}{\sqrt{3}}$
1.
\(6=\frac{\sqrt{2}^2}{x}+\frac{\sqrt{3}^2}{y}\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{x+y}=\frac{5+2\sqrt{6}}{x+y}\)
\(\Rightarrow x+y\ge\frac{5+2\sqrt{6}}{6}\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\frac{x}{\sqrt{2}}=\frac{y}{\sqrt{3}}\\x+y=\frac{5+2\sqrt{6}}{6}\end{matrix}\right.\)
Bạn tự giải hệ tìm điểm rơi nếu thích, số xấu quá
2.
\(VT\ge\sqrt{\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\ge\sqrt{\left(x+y+z\right)^2+\frac{81}{\left(x+y+z\right)^2}}\)
Đặt \(x+y+z=t\Rightarrow0< t\le1\)
\(VT\ge\sqrt{t^2+\frac{81}{t^2}}=\sqrt{t^2+\frac{1}{t^2}+\frac{80}{t^2}}\ge\sqrt{2\sqrt{\frac{t^2}{t^2}}+\frac{80}{1^2}}=\sqrt{82}\)
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)
3.
\(\frac{a^2}{b^5}+\frac{a^2}{b^5}+\frac{a^2}{b^5}+\frac{1}{a^3}+\frac{1}{a^3}\ge5\sqrt[5]{\frac{a^6}{b^{15}.a^6}}=\frac{5}{b^3}\)
Tương tự: \(\frac{3b^2}{c^5}+\frac{2}{b^3}\ge\frac{5}{a^3}\) ; \(\frac{3c^2}{d^5}+\frac{2}{c^3}\ge\frac{5}{d^3}\) ; \(\frac{3d^2}{a^5}+\frac{2}{d^2}\ge\frac{5}{a^3}\)
Cộng vế với vế và rút gọn ta được: \(3VT\ge3VP\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c=d=1\)
4.
ĐKXĐ: \(-2\le x\le2\)
\(y^2=\left(x+\sqrt{4-x^2}\right)^2\le2\left(x^2+4-x^2\right)=8\)
\(\Rightarrow y\le2\sqrt{2}\Rightarrow y_{max}=2\sqrt{2}\) khi \(x=\sqrt{2}\)
Mặt khác do \(\left\{{}\begin{matrix}x\ge-2\\\sqrt{4-x^2}\ge0\end{matrix}\right.\) \(\Rightarrow x+\sqrt{4-x^2}\ge-2\)
\(y_{min}=-2\) khi \(x=-2\)
2.
Áp dụng bất đẳng thức Bunhiacopxki :
\(\left(1+9^2\right)\left(x^2+\frac{1}{x^2}\right)\ge\left(x+\frac{9}{x}\right)^2\)
\(\Leftrightarrow82\cdot\left(x^2+\frac{1}{x^2}\right)\ge\left(x+\frac{9}{x}\right)^2\)
\(\Leftrightarrow\sqrt{82}\cdot\sqrt{x^2+\frac{1}{x^2}}\ge x+\frac{9}{x}\)
Tương tự ta cũng có :
\(\sqrt{82}\cdot\sqrt{y^2+\frac{1}{y^2}}\ge y+\frac{9}{y}\)
\(\sqrt{82}\cdot\sqrt{z^2+\frac{1}{z^2}}\ge z+\frac{9}{z}\)
Cộng theo vế của các bất đẳng thức ta được :
\(\sqrt{82}\cdot\left(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\right)\ge x+y+z+\frac{9}{x}+\frac{9}{y}+\frac{9}{z}\)
\(\Leftrightarrow\sqrt{82}\cdot P\ge x+\frac{9}{x}+y+\frac{9}{y}+z+\frac{9}{z}\)(1)
Mặt khác áp dụng bất đẳng thức Cauchy ta có :
\(x+\frac{9}{x}+y+\frac{9}{y}+z+\frac{9}{z}=81x+\frac{9}{x}+81y+\frac{9}{y}+81z+\frac{9}{z}-80x-80y-80z\)
\(\ge2\sqrt{\frac{81x\cdot9}{x}}+2\sqrt{\frac{81y\cdot9}{y}}+2\sqrt{\frac{81z\cdot9}{z}}-80\left(x+y+z\right)\)
\(\ge2\sqrt{729}+2\sqrt{729}+2\sqrt{729}-80\cdot1\)
\(=82\) (2)
Từ (1) và (2) suy ra \(\sqrt{82}\cdot P\ge82\)
\(\Leftrightarrow P\ge\sqrt{82}\) ( đpcm )
Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\frac{1}{3}\)
1.
Áp dụng bất đẳng thức Cauchy :
\(\frac{a^2+1}{a}+\frac{b^2+1}{b}+\frac{c^2+1}{c}\)
\(=a+\frac{1}{a}+b+\frac{1}{b}+c+\frac{1}{c}\)
\(=9a+\frac{1}{a}+9b+\frac{1}{b}+9c+\frac{1}{c}-8a-8b-8c\)
\(\ge2\sqrt{\frac{9a}{a}}+2\sqrt{\frac{9b}{b}}+2\sqrt{\frac{9c}{c}}-8\left(a+b+c\right)\)
\(\ge3\cdot2\sqrt{9}-8=10\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)
BĐT sai với $(x,y,z)=(4,6,1)$
BĐ cũng sai với \(\left(x;y;z\right)=\left(1;5;3\right)\)