Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
Áp dụng bất đẳng thức AM - GM cho 2 số dương ta có:
\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt{\frac{ab}{c}.\frac{bc}{a}}=2b\)
tương tự, ta có:
\(\frac{bc}{a}+\frac{ac}{b}\ge2\sqrt{\frac{bc}{a}.\frac{ac}{b}}=2c\)
\(\frac{ab}{c}+\frac{ac}{b}\ge2\sqrt{\frac{ab}{c}.\frac{ac}{b}}=2a\)
Cộng theo vế của 3 BĐT trên, ta được:
\(2\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\right)\ge2\left(a+b+c\right)\)
\(\Rightarrow\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\ge a+b+c\) (ĐPCM)
ý b nghĩ đã ~.~
2.
P = \(\frac{x^2}{2-x}+\frac{y^2}{2-y}+\frac{z^2}{2-z}\)
Sau đó áp dụng bất đẳng thức AM - GM như trên nhé bạn!
1 slot tối làm cho :))
Bài này trích trong đề thi HSG Toán 9 tỉnh Thanh Hóa
Như đã hứa,giờ làm cho :))
BĐT\(\Leftrightarrow\frac{xz}{y^2+yz}+\frac{y}{xz+yz}+\frac{z}{x+z}\ge\frac{3}{2}\).Đặt \(\frac{x}{y}=a>0;\frac{y}{z}=b>0\)\(\Rightarrow ab=\frac{x}{z}\ge1\)
Ta có BĐT:\(\frac{1}{\frac{y^2}{xz}+\frac{y}{x}}+\frac{1}{\frac{xz}{y^2}+\frac{z}{y}}+\frac{1}{1+\frac{x}{z}}\ge\frac{3}{2}\)
\(\Rightarrow\frac{1}{\frac{b}{a}+\frac{1}{a}}+\frac{1}{\frac{a}{b}+\frac{1}{b}}+\frac{1}{ab+1}\ge\frac{3}{2}\)\(\Leftrightarrow\frac{a}{b+1}+\frac{b}{a+1}+\frac{1}{ab+1}\ge\frac{3}{2}\)
\(\Leftrightarrow\frac{a^2}{ab+a}+\frac{b^2}{ab+b}+\frac{1}{ab+1}\ge\frac{3}{2}\).Áp dụng BĐT Bunhiacopxki mở rộng ta có:
\(\frac{a^2}{ab+a}+\frac{b^2}{ab+b}\ge\frac{\left(a+b\right)^2}{2ab+a+b}\).Ta cần chứng minh:\(\frac{\left(a+b\right)^2}{2ab+a+b}\ge\frac{2\left(a+b\right)}{a+b+2}\)(*).Thật vậy:
(*)\(\Rightarrow\frac{a+b}{2ab+a+b}\ge\frac{2}{a+b+2}\Leftrightarrow\left(a+b\right)\left(a+b+2\right)\ge2\left(2ab+a+b\right)\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\)(đúng)
Nên \(\frac{a^2}{ab+a}+\frac{b^2}{ab+b}+\frac{1}{ab+1}\ge\frac{2\left(a+b\right)}{a+b+2}+\frac{1}{ab+1}\)\(\ge\frac{2\left(a+b\right)}{a+b+2}+\frac{4}{4+\left(a+b\right)^2}\)
Đặt \(m=a+b\ge2\sqrt{ab}\ge2\).Ta cần chứng minh:\(\frac{2m}{m+2}+\frac{4}{4+m^2}\ge\frac{3}{2}\)(**).Thật vậy
(**)\(\Leftrightarrow\frac{2m}{m+2}+\frac{3m^2+4}{2m^2+8}\ge0\)\(\Leftrightarrow\frac{2m\left(2m^2+8\right)-\left(m+2\right)\left(3m^2+4\right)}{\left(m+2\right)\left(2m^2+8\right)}\ge0\)
\(\Leftrightarrow\frac{\left(m-2\right)^3}{\left(m+2\right)\left(2m^2+8\right)}\ge0\) đúng với mọi \(m\ge2\)
Vậy BĐT đã được chứng minh.Dấu "=" xảy ra khi chỉ khi x=y=z
Lời giải:
Áp dụng BĐT AM-GM ta có:
\(\text{VT}=x-\frac{x}{x^2+z}+y-\frac{y}{y^2+x}+z-\frac{z}{z^2+y}=(x+y+z)-\left(\frac{x}{x^2+z}+\frac{y}{y^2+x}+\frac{z}{z^2+y}\right)\)
\(\geq (x+y+z)-\left(\frac{x}{2\sqrt{x^2z}}+\frac{y}{2\sqrt{y^2x}}+\frac{z}{2\sqrt{z^2y}}\right)=(x+y+z)-\frac{1}{2}\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\right)(1)\)
Từ giả thiết \(xy+yz+xz=3xyz\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3\)
Cauchy-Schwarz:
\(3=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{9}{x+y+z}\Rightarrow x+y+z\geq 3(2)\)
\(\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\right)^2\leq (\frac{1}{x}+\frac{1}{y}+\frac{1}{z})(1+1+1)=9\)
\(\Rightarrow \left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\right)\leq 3(3)\)
Từ \((1);(2);(3)\Rightarrow \text{VT}\geq 3-\frac{1}{2}.3=\frac{3}{2}\)
Mặt khác: \(\text{VP}=\frac{1}{2}(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})=\frac{3}{2}\)
Do đó \(\text{VT}\geq \text{VP}\) (đpcm)
Dấu "=" xảy ra khi $x=y=z=1$
Cho x,y,z >0 và x+y+z=3.Chứng minh \(\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}\ge\frac{3}{2}\)
đặt A=\(\frac{1}{x\left(x+1\right)}\) +\(\frac{1}{y\left(y+1\right)}\) +\(\frac{1}{z\left(z+1\right)}\)=\(\frac{1}{x}\)-\(\frac{1}{x+1}\)+\(\frac{1}{y}\)-\(\frac{1}{y+1}\)+\(\frac{1}{z}\)-\(\frac{1}{z+1}\)
Áp dụng BĐT phụ \(\frac{1}{a}\)+\(\frac{1}{b}\)≥\(\frac{4}{a+b}\) (bạn tự chứng minh nha,quy đồng ,nhân chéo ,chuyển về )⇒\(\frac{1}{a+b}\) ≤\(\frac{1}{4}\)(\(\frac{1}{a}\)+\(\frac{1}{b}\))
⇒A≥\(\frac{1}{x}\)+\(\frac{1}{y}\)+\(\frac{1}{z}\)-\(\frac{1}{4}\)(\(\frac{1}{x}\)+\(\frac{1}{y}\)+\(\frac{1}{z}\)+3)
⇒A≥\(\frac{3}{4}\) (\(\frac{1}{x}\)+\(\frac{1}{y}\)+\(\frac{1}{z}\))-\(\frac{3}{4}\)≥\(\frac{3}{4}\) (\(\frac{9}{x+y+z}\))-\(\frac{3}{4}\)
⇒a≥\(\frac{9}{4}\)-\(\frac{3}{4}\)=\(\frac{3}{2}\) dpcm
Đề bài sai
Phản ví dụ: với \(x=y=z=2\Rightarrow x^2+y^2+z^2=12>9\) (thỏa mãn điều kiện)
Nhưng \(\frac{x}{yz}+\frac{y}{zx}+\frac{z}{xy}=\frac{3}{2}< \sqrt{3}\)
Ta có \(\frac{x^3}{y}+xy\ge2x^2\)
\(\frac{y^3}{z}+yz\ge2y^2\)
\(\frac{z^3}{x}+xz\ge2z^2\)
\(\Rightarrow\frac{x^3}{y}+\frac{y^3}{z}+\frac{z^3}{x}\ge2\left(x^2+y^2+z^2\right)-xy-yz-xz\)
\(\ge2\left(x^2+y^2+z^2\right)-x^2-y^2-z^2=x^2+y^2+z^2\)
\(VT\ge2\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\right)-3\)
\(\ge2\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\right)-\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\right)=\frac{x}{y}+\frac{y}{z}+\frac{z}{x}=VP^{\left(đpcm\right)}\)