\(\frac{1}{x^2+4yz}+\frac{1}{y^2+4xz}+\frac{1}{z^2+4xy}< \frac...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2017

Áp dụng BĐT AM-GM ta có: \(\frac{x^2+4yz}{2}\ge2x\sqrt{yz}\)

\(\Rightarrow\frac{2}{x^2+4yz}\le\frac{1}{2x\sqrt{yz}}\Rightarrow\frac{1}{x^2+4yz}\le\frac{1}{4x\sqrt{yz}}\)

Cộng theo vế ta có:

\(\frac{1}{x^2+4yz}+\frac{1}{y^2+4xz}+\frac{1}{z^2+4xy}\le\frac{1}{4x\sqrt{yz}}+\frac{1}{4y\sqrt{xz}}+\frac{1}{4z\sqrt{xy}}\)

Cần chứng minh \(\frac{1}{4x\sqrt{yz}}+\frac{1}{4y\sqrt{xz}}+\frac{1}{4z\sqrt{xy}}\le\frac{1}{xyz}\)

Nhân 2 vế với \(xyz\) ta lại được BĐT cần c/m tương đương với:

\(\frac{1}{4}\left(\sqrt{yz}+\sqrt{xz}+\sqrt{xy}\right)\le1\)

Áp dụng BĐT AM-GM lần nữa ta có:

\(\frac{1}{4}\left(\sqrt{yz}+\sqrt{xz}+\sqrt{xy}\right)\le\frac{1}{4}\left(x+y+z\right)=1\) (Đúng)

Vậy BĐT đầu đã được c/m

25 tháng 2 2017

\(\left|\left\{\right\}\right|\)

24 tháng 10 2019

@Akai Haruma

@Trần Thanh Phương

@HISINOMA KINIMADO

22 tháng 5 2020

ko lam thi thoi chui cl ay!!!

22 tháng 5 2020

đù , chuyện giề đang xảy ra vậy man

22 tháng 11 2019

Câu hỏi của FF_ - Toán lớp 8 - Học toán với OnlineMath

30 tháng 8 2017

Đầu tiên CM BDT :

\(1+x^3+y^3\ge xy"x+y+z"\)

\(\Leftrightarrow x^3+y^3\ge xy"x+y"\)" do \(xyz=1\)"

\(\Leftrightarrow"x+y""x^2+y^2-xy"-xy"x+y"\ge0\)

\(\Leftrightarrow"x+y""x-y"^2\ge0\)

BDT luôn đúng theo gt 

\(\Rightarrow\sqrt{"1+x^3+y^3"}\ge\sqrt{xy"x+y+z"}\)

\(\Rightarrow\sqrt{\frac{"1+x^3+y^3}{xy}}\ge\sqrt{\frac{"x+y+z"}{xz}}\)

Tương tự

\(\Rightarrow\sqrt{\frac{"1+z^3+y^3}{zy}}\ge\sqrt{\frac{"x+y+z"}{zy}}\)

\(\sqrt{\frac{"1+x^3+y^3"}{xz}}\ge\sqrt{\frac{"x+y+z"}{xz}}\)

\(\Rightarrow VT\ge\sqrt{"x+y+z"}.\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{zx}}\)

AD BDT Cauchy cho các số > 0

\(x+y+z\ge3\)\(\sqrt[3]{xyz}=3\)

\(\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{zx}}\ge\frac{3}{\sqrt[3]{xyz}}=3\)

\(\Rightarrow VT\ge\sqrt{3}.3=3\sqrt{3}=VP\) 

\(\Rightarrow VT\ge VP\)

\(\Rightarrow DPCM\)

Vậy Dấu \(= khi x=y=z=1\)

P/s: Thay dấu noặc kép thành ngọc đơn nha, Ko chắc đâu

17 tháng 7 2019

Bài 1:

Theo BĐT AM-GM có :$(x+y+1)(x^2+y^2)+\dfrac{4}{x+y}\geq (x+y+1).2xy+\dfrac{4}{x+y}=2(x+y+1)+\dfrac{4}{x+y}=(x+y)+(x+y)+\dfrac{4}{x+y}+2\geq 2\sqrt{xy}+2\sqrt{(x+y).\dfrac{4}{x+y}}+2=2+4+2=8$(đpcm)

Dấu \(=\) xảy ra khi \(x=y, xy=1\)\(x+y=2\) hay \(x=y=1\)

AH
Akai Haruma
Giáo viên
17 tháng 7 2019

Bài 1:

Áp dụng BĐT Cô-si cho các số dương:

\(x^2+y^2\geq 2xy=2\Rightarrow (x+y+1)(x^2+y^2)+\frac{4}{x+y}\geq 2(x+y+1)+\frac{4}{x+y}(1)\)

Tiếp tục áp dụng BĐT Cô-si:

\(2(x+y+1)+\frac{4}{x+y}=(x+y+2)+[(x+y)+\frac{4}{x+y}]\)

\(\geq (2\sqrt{xy}+2)+2\sqrt{(x+y).\frac{4}{x+y}}=(2+2)+4=8(2)\)

Từ \((1);(2)\Rightarrow (x+y+1)(x^2+y^2)+\frac{4}{x+y}\geq 8\) (đpcm)

Dấu "=" xảy ra khi $x=y=1$