Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{xyz}\left(x+y+z\right)=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{1}{xyz}=4\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\)(vì \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>0\))
Mặt khác, ta có : \(\frac{1}{x+y+z}=2\) .
\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\left(\frac{1}{z}-\frac{1}{x+y+z}\right)=0\)
\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y}{z\left(x+y+z\right)}=0\Leftrightarrow\left(x+y\right)\left(\frac{1}{xy}+\frac{1}{z\left(x+y+z\right)}\right)=0\)
\(\Leftrightarrow\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz\left(x+y+z\right)}=0\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)
=> x+y = 0 hoặc y + z = 0 hoặc z + x = 0
Từ đó suy ra P = 0 (lí do vì x,y,z là các số mũ lẻ)
Câu a đề hơi sai nha bạn, nên mình chỉ giải câu b thoi
Áp dụng AM-GM cho các bộ 3 số dương (x,y,z) và (1/x,1/y,1/z):
\(x+y+z\ge3\sqrt[3]{xyz}\)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{3}{\sqrt[3]{xyz}}\)
\(\Rightarrow P\ge6\sqrt[3]{xyz}+\frac{3}{\sqrt[3]{xyz}}\ge2\sqrt{6\sqrt[3]{xyz}.\frac{3}{\sqrt[3]{xyz}}}=6\sqrt{2}\)(BĐT Cô-si)
Dấu = xảy ra khi và chỉ khi \(x=y=z=\frac{1}{\sqrt{2}}\)( thỏa x,y,z thuộc (0;1))
Có: \(x+y+z=\frac{1}{2}\Leftrightarrow2x+2y+2z=1\)
Mặt khác: \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{1}{xyz}=4\)
\(\Leftrightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2x+2y+2z}{xyz}=4\)
\(\Leftrightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{xy}+\frac{2}{yz}+\frac{2}{zx}=4\)
\(\Leftrightarrow\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=4\)
\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\) ( vì \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>0\) )
\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{\frac{1}{2}}=\frac{1}{x+y+z}\)
\(\Leftrightarrow\frac{x+y}{xy}=\frac{1}{x+y+z}-\frac{1}{z}=\frac{-\left(x+y\right)}{z\left(x+y+z\right)}\)
\(\Leftrightarrow\left(x+y\right)\left(zx+yz+z^2\right)+xy\left(x+y\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left(xy+yz+zx+z^2\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+y=0\\y+z=0\\z+x=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x^{2021}+y^{2021}=0\\y^{2017}+z^{2017}=0\\z^{2019}+x^{2019}=0\end{matrix}\right.\)\(\Leftrightarrow Q=0\)
Vậy...
Ta co:
\(A=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2+\left(z+\frac{1}{z}\right)^2\ge\frac{\left(x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}{3}\ge\frac{\left(1+\frac{9}{x+y+z}\right)^2}{3}=\frac{100}{3}\)
Dau '=' xay ra khi \(x=y=z=\frac{1}{3}\)
Vay \(A_{min}=\frac{100}{3}\)khi \(x=y=z=\frac{1}{3}\)
\(H=\frac{1}{\left(x+1\right)^2+y^2+1}+\frac{1}{\left(y+1\right)^2+z^2+1}+\frac{1}{\left(z+1\right)^2+x^2+1}\)
\(\Leftrightarrow\)\(H=\frac{1}{\left(x+1\right)^2+\left(y+1\right)^2-2y}+\frac{1}{\left(y+1\right)^2+\left(z+1\right)^2-2z}+\frac{1}{\left(z+1\right)^2+\left(x+1\right)^2-2x}\)
Áp dụng BĐT AM-GM ta có:
\(H\le\frac{1}{2.\left(x+1\right)\left(y+1\right)-2y}+\frac{1}{2.\left(y+1\right)\left(z+1\right)-2z}+\frac{1}{2.\left(z+1\right)\left(x+1\right)-2x}\)
\(\Leftrightarrow H\le\frac{1}{2.\left(x+y+xy+1\right)-2y}+\frac{1}{2.\left(y+z+yz+1\right)-2z}+\frac{1}{2.\left(x+z+xz+1\right)-2x}\)
\(\Leftrightarrow H\le\frac{1}{2.\left(x+xy+1\right)}+\frac{1}{2.\left(y+yz+1\right)}+\frac{1}{2.\left(z+xz+1\right)}\)
\(\Leftrightarrow H\le\frac{1}{2}\left[\frac{xyz}{x\left(1+y+yz\right)}+\frac{1}{y+yz+1}+\frac{xyz}{xz\left(y+yz+1\right)}\right]\)
\(\Leftrightarrow H\le\frac{1}{2}\left[\frac{yz}{1+y+yz}+\frac{1}{y+yz+1}+\frac{y}{y+yz+1}\right]=\frac{1}{2}.1=\frac{1}{2}\)
Dấu " = " xảy ra <=> \(x=y=z=1\)
Vậy \(H_{max}=\frac{1}{2}\Leftrightarrow x=y=z=1\)