K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
2 tháng 12 2019
Ta có:\(\frac{4+4\sqrt{1+x^2}}{4x}\le\frac{4+5+x^2}{4x}=\)\(\frac{x^2+9}{4x}\)Tương tự ta đc P\(\le\frac{x+y+z}{4}+\frac{9}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(=\frac{1}{4}\left(x+y+z\right)+\frac{9}{4}\left(\frac{xy+yz+zx}{xyz}\right)\)\(\le\frac{1}{4}\left(x+y+z\right)+\frac{9}{4}\cdot\frac{\left(x+y+z\right)^2}{3\left(x+y+z\right)}\)\(=x+y+z\)
Dấu '='xảy ra <=>\(\hept{\begin{cases}x+y+z=xyz\\x=y=z\end{cases}\Rightarrow x=y=z=}\)\(\frac{1}{\sqrt{3}}\)
HP
cho x,y,z>0 và x+y+z=4. CMR \(\frac{1}{x^2+4yz}+\frac{1}{y^2+4xz}+\frac{1}{z^2+4xy}< \frac{1}{xyz}\)
0
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{x^2}{1+y}+\frac{y^2}{1+z}+\frac{z^2}{1+x}\geq \frac{(x+y+z)^2}{1+y+1+z+1+x}=\frac{(x+y+z)^2}{(x+y+z)+3}\)
Áp dụng BĐT Cauchy:
\(x+y+z\geq 3\sqrt[3]{xyz}=3\)
Do đó:
\(\frac{x^2}{1+y}+\frac{y^2}{1+z}+\frac{z^2}{1+x}\geq \frac{(x+y+z)^2}{(x+y+z)+3}\geq \frac{(x+y+z)^2}{(x+y+z)+(x+y+z)}=\frac{x+y+z}{2}\geq \frac{3}{2}\)
Ta có đpcm.
Dấu "=" xảy ra khi $x=y=z=1$
P/s: Bạn chú ý lần sau gõ tiêu đề bằng công thức toán !!!