\(xy+yz+xz\ge3\)

Tìm MinP = \(\Sigma\dfrac{x...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2021

Ta có :

\(P=\sum\dfrac{x^3}{\sqrt{y^2+3}}\ge\sum\dfrac{x^3}{\sqrt{y^2+xy+yz+zx}}\ge\sum\dfrac{x^3}{\sqrt{\left(x+y\right)\left(z+y\right)}}\\ \overset{Cosi}{\ge}\sum\dfrac{2x^3}{x+2y+z}\ge2\sum\dfrac{\left(x^2\right)^2}{x^2+2xy+xz}\\ \overset{Svacxo}{\ge}2\dfrac{\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2+3\left(xy+yz+zx\right)}\)

\(\overset{Cosi}{\ge}\dfrac{2\left(x^2+y^2+z^2\right)^2}{4\left(x^2+y^2+z^2\right)}=\dfrac{x^2+y^2+z^2}{2}\\ \overset{Cosi}{\ge}\dfrac{xy+yz+zx}{2}\ge\dfrac{3}{2}\)

Dấu = xảy ra khi x=y=z=1

12 tháng 3 2017

solution:

ta có: \(3=x^2+y^2+z^2\ge3\sqrt[3]{x^2y^2z^2}\Leftrightarrow xyz\le1\)(theo BĐT cauchy cho 3 số )

\(\Rightarrow xy\le\dfrac{1}{z};yz\le\dfrac{1}{x};xz\le\dfrac{1}{y}\)

\(\Rightarrow\dfrac{x}{\sqrt[3]{yz}}\ge\dfrac{x}{\dfrac{1}{\sqrt[3]{x}}}=x\sqrt[3]{x}=\sqrt[3]{x^4}\)

tương tự ta có:\(\dfrac{y}{\sqrt[3]{xz}}\ge\sqrt[3]{y^4};\dfrac{z}{\sqrt[3]{xy}}\ge\sqrt[3]{z^4}\)

cả 2 vế các BĐT đều dương,cộng vế với vế:

\(S=\dfrac{x}{\sqrt[3]{yz}}+\dfrac{y}{\sqrt[3]{xz}}+\dfrac{z}{\sqrt[3]{xy}}\ge\sqrt[3]{x^4}+\sqrt[3]{y^4}+\sqrt[3]{z^4}\)

Áp dụng BĐT bunyakovsky ta có:

\(\left(\sqrt[3]{x^4}+\sqrt[3]{y^4}+\sqrt[3]{z^4}\right)\left(x^2+y^2+z^2\right)\ge\left(\sqrt[3]{x^8}+\sqrt[3]{y^8}+\sqrt[3]{z^8}\right)^2=\left(x^2+y^2+z^2\right)^2\)

\(\Rightarrow S\ge x^2+y^2+z^2\)

đến đây ta lại có BĐT quen thuộc: \(x^2+y^2+z^2\ge xy+yz+xz\)

\(\Rightarrow S\ge xy+yz+xz\left(đpcm\right)\)

dấu = xảy ra khi và chỉ khi x=y=z mà x2+y2+z2=3 => x=y=z=1

*cách khác : Áp dụng BĐT cauchy - schwarz(bunyakovsky):

\(S=\dfrac{x}{\sqrt[3]{yz}}+\dfrac{y}{\sqrt[3]{xz}}+\dfrac{z}{\sqrt[3]{xy}}=\dfrac{x^4}{x^3.\dfrac{1}{\sqrt[3]{x}}}+\dfrac{y^4}{y^3.\dfrac{1}{\sqrt[3]{y}}}+\dfrac{z^4}{z^3.\dfrac{1}{\sqrt[3]{z}}}\)

\(S\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2}=x^2+y^2+z^2\ge xy+yz+xz\)

13 tháng 3 2017

cái cách 2 là svac mà nhỉ

NV
24 tháng 10 2020

Ta có:

\(VT=\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=\frac{xy+yz+zx}{xy}+\frac{xy+yz+zx}{yz}+\frac{xy+yz+zx}{zx}\)

\(VT=3+\frac{z\left(x+y\right)}{xy}+\frac{x\left(y+z\right)}{yz}+\frac{y\left(x+z\right)}{zx}\) (1)

Mặt khác:

\(\frac{z\left(x+y\right)}{xy}+\frac{x\left(y+z\right)}{yz}\ge2\sqrt{\frac{zx\left(x+y\right)\left(y+z\right)}{xy^2z}}=2\sqrt{\frac{\left(x+y\right)\left(y+z\right)}{y^2}}=\frac{2\sqrt{y^2+xy+yz+zx}}{y}=\frac{2\sqrt{y^2+1}}{y}\)

Tương tự: \(\frac{z\left(x+y\right)}{xy}+\frac{y\left(x+z\right)}{zx}\ge\frac{2\sqrt{x^2+1}}{x}\) ; \(\frac{x\left(y+z\right)}{yz}+\frac{y\left(x+z\right)}{zx}\ge\frac{2\sqrt{z^2+1}}{z}\)

Cộng vế với vế:

\(\frac{z\left(x+y\right)}{xy}+\frac{x\left(y+z\right)}{yz}+\frac{y\left(x+z\right)}{xz}\ge\frac{\sqrt{x^2+1}}{x}+\frac{\sqrt{y^2+1}}{y}+\frac{\sqrt{z^2+1}}{z}\) (2)

Từ (1) và (2) suy ra đpcm

Dấu "=" xảy ra khi \(x=y=z=...\)

NV
26 tháng 11 2018

\(\dfrac{\sqrt{1+x^3+y^3}}{xy}\ge\dfrac{\sqrt{3\sqrt[3]{x^3y^3}}}{xy}=\dfrac{\sqrt{3xy}}{xy}=\dfrac{\sqrt{3}}{\sqrt{xy}}\)

Tương tự \(\dfrac{\sqrt{1+y^3+z^3}}{yz}\ge\dfrac{\sqrt{3}}{\sqrt{yz}};\dfrac{\sqrt{1+x^3+z^3}}{xz}\ge\dfrac{\sqrt{3}}{\sqrt{xz}}\)

\(\Rightarrow VT\ge\sqrt{3}\left(\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\right)\ge\sqrt{3}.\dfrac{3}{\sqrt[3]{xyz}}=3\sqrt{3}\)

Dấu "=" xảy ra khi x=y=z=1

3 tháng 6 2019

Ta có : \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\ge xy\left(x+y\right)\)

\(\Rightarrow1+x^3+y^3\ge xyz+xy\left(x+y\right)=xy\left(x+y+z\right)\ge3xy\sqrt[3]{xyz}=3xy\)

\(\frac{\sqrt{1+x^3+y^3}}{xy}\ge\frac{\sqrt{3xy}}{xy}=\sqrt{\frac{3}{xy}}\)

Tương tự : \(\frac{\sqrt{1+y^3+z^3}}{yz}\ge\frac{\sqrt{3yz}}{yz}=\sqrt{\frac{3}{yz}}\)\(\frac{\sqrt{1+x^3+z^3}}{xz}\ge\frac{\sqrt{3xz}}{xz}=\sqrt{\frac{3}{xz}}\)

\(\Rightarrow A\ge\sqrt{3}\left(\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{xz}}\right)\ge3\sqrt{3}\sqrt{\frac{1}{\sqrt{x^2y^2z^2}}}=3\sqrt{3}\)

15 tháng 8 2020

TỪ GT =>    \(3\le xy+yz+zx\)

=>    \(P\ge\frac{x^3}{\sqrt{y^2+xy+yz+zx}}+\frac{y^3}{\sqrt{z^2+xy+yz+zx}}+\frac{z^3}{\sqrt{x^2+xy+yz+zx}}\)

=>     \(P\ge\frac{x^3}{\sqrt{\left(x+y\right)\left(y+z\right)}}+\frac{y^3}{\sqrt{\left(z+x\right)\left(z+y\right)}}+\frac{z^3}{\sqrt{\left(x+y\right)\left(x+z\right)}}\)

TA ÁP DỤNG BĐT CAUCHY 2 SỐ SẼ ĐƯỢC:

=> \(\hept{\begin{cases}\sqrt{x+y}.\sqrt{y+z}\le\frac{x+2y+z}{2}\\\sqrt{z+x}.\sqrt{z+y}\le\frac{x+y+2z}{2}\\\sqrt{x+y}.\sqrt{x+z}\le\frac{2x+y+z}{2}\end{cases}}\)

=>   \(P\ge\frac{2x^3}{x+2y+z}+\frac{2y^3}{x+y+2z}+\frac{2z^3}{2x+y+z}\)

=>   \(P\ge\frac{2x^4}{x^2+2xy+2xz}+\frac{2y^4}{xy+y^2+2yz}+\frac{2z^4}{2xz+yz+z^2}\)

TA TIẾP TỤC ÁP DỤNG BĐT CAUCHY - SCHWARZ SẼ ĐƯỢC: 

=>   \(P\ge\frac{2\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2+3\left(xy+yz+zx\right)}\)

TA CÓ 1 BĐT SAU:      \(xy+yz+zx\le x^2+y^2+z^2\)      (*)

=>   \(P\ge\frac{2\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2+3\left(x^2+y^2+z^2\right)}\)

=>   \(P\ge\frac{2\left(x^2+y^2+z^2\right)^2}{4\left(x^2+y^2+z^2\right)}=\frac{x^2+y^2+z^2}{2}\)

TA LẠI 1 LẦN NỮA SỬ DỤNG BĐT (*) SẼ ĐƯỢC:  

=>   \(P\ge\frac{xy+yz+zx}{2}\ge\frac{3}{2}\left(gt\right)\)

DẤU "=" XẢY RA <=>   \(x=y=z\)

VẬY P MIN \(=\frac{3}{2}\Leftrightarrow x=y=z=1\)

15 tháng 8 2020

Ta có :

\(P\ge\frac{x^3}{\sqrt{y^2+xy+yz+zx}}+\frac{y^3}{\sqrt{z^2+xy+yz+zx}}+\frac{z^3}{\sqrt{z^2+xy+yz+zx}}\)

\(=\frac{x^3}{\sqrt{\left(y+z\right)\left(y+x\right)}}+\frac{y^3}{\sqrt{\left(z+x\right)\left(z+y\right)}}+\frac{z^3}{\sqrt{\left(x+y\right)\left(x+z\right)}}\)

\(\ge\frac{2x^3}{x+2y+z}+\frac{2y^3}{x+y+2z}+\frac{2z^3}{2x+y+z}\)\(\ge2.\frac{\left(x^2+y^2+z^2\right)^2}{\left(x^2+y^2+z^2\right)+3.\left(xy+yz+zx\right)}\ge2.\frac{\left(xy+yz+zx\right)^2}{4.\left(xy+yz+zx\right)}\ge2.\frac{3}{4}=\frac{3}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=1\)

30 tháng 9 2017

Áp dụng BĐT AM-GM:

\(VT=\sum\dfrac{\sqrt{\left(x+y\right)^2-xy}}{4yz+1}\ge\sum\dfrac{\sqrt{\left(x+y\right)^2-\dfrac{1}{4}\left(x+y\right)^2}}{\left(y+z\right)^2+1}=\sum\dfrac{\dfrac{\sqrt{3}}{2}\left(x+y\right)}{\left(y+z\right)^2+1}\)

Set \(\left\{{}\begin{matrix}x+y=a\\y+z=b\\z+x=c\end{matrix}\right.\)thì giả thiết trở thành \(a+b+c=3\) và cần chứng minh \(\dfrac{\sqrt{3}}{2}.\sum\dfrac{a}{b^2+1}\ge\dfrac{3\sqrt{3}}{4}\)

\(\Leftrightarrow\sum\dfrac{a}{b^2+1}\ge\dfrac{3}{2}\)( đến đây quen thuộc rồi)

Ta có:\(\sum\dfrac{a}{b^2+1}=\sum a-\sum\dfrac{ab^2}{b^2+1}\ge3-\sum\dfrac{ab^2}{2b}\)(AM-GM)

\(VT\ge3-\sum\dfrac{ab}{2}\ge3-\dfrac{\dfrac{1}{3}\left(a+b+c\right)^2}{2}=\dfrac{3}{2}\)( AM-GM)

Vậy ta có đpcm.Dấu = xảy ra khi a=b=c=1 hay \(x=y=z=\dfrac{1}{2}\)

30 tháng 9 2017

cảm ơn bạn nhé

AH
Akai Haruma
Giáo viên
23 tháng 11 2018

Tham khảo tại đây:

Câu hỏi của Hồ Minh Phi - Toán lớp 9 | Học trực tuyến

AH
Akai Haruma
Giáo viên
20 tháng 11 2018

Lời giải:

Để cho gọn đặt \((\sqrt{x}; \sqrt{y}; \sqrt{z})=(a,b,c)\) với \(a,b,c>0\)

Khi đó:

\(A=\frac{bc}{a^2+2bc}+\frac{ac}{b^2+2ac}+\frac{ab}{c^2+2ab}\)

\(=\frac{1}{2}(\frac{2bc}{a^2+2bc}+\frac{2ac}{b^2+2ac}+\frac{2ab}{c^2+2ab})\)

\(=\frac{1}{2}\left(1-\frac{a^2}{a^2+2bc}+1-\frac{b^2}{b^2+2ac}+1-\frac{c^2}{c^2+2ab}\right)\)

\(=\frac{3}{2}-\frac{1}{2}\underbrace{\left(\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}\right)}_{M}\)

Áp dụng BĐT Cauchy-Schwarz:

\(M\geq \frac{(a+b+c)^2}{a^2+2bc+b^2+2ac+c^2+2ab}=\frac{(a+b+c)^2}{(a+b+c)^2}=1\)

\(\Rightarrow A=\frac{3}{2}-\frac{1}{2}M\leq \frac{3}{2}-\frac{1}{2}=1\)

Vậy \(A_{\max}=1\Leftrightarrow a=b=c\Leftrightarrow x=y=z\)