Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta chứng minh \(x^4+y^4\ge x^3y+xy^3\)
\(\Leftrightarrow x^3\left(x-y\right)-y^3\left(x-y\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left[\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}\right]\ge0\)(luôn đúng)
Áp dụng vào bài toán ta có:
\(x^4+y^4\ge x^3y+xy^3\)\(\Rightarrow2\left(x^4+y^4\right)\ge x^4+y^4+x^3y+xy^3\)\(=\left(x^3+y^3\right)\left(x+y\right)\)
\(\Rightarrow\frac{x^4+y^4}{x^3+y^3}\ge\frac{x+y}{2}\).Tương tự ta cũng có:
\(\frac{y^4+z^4}{y^3+z^3}\ge\frac{y+z}{2};\frac{z^4+x^4}{z^3+x^3}\ge\frac{z+x}{2}\)
Cộng theo vế ta có: \(VT\ge\frac{x+y}{2}+\frac{y+z}{2}+\frac{z+x}{2}=x+y+z=1\)
Dấu = khi \(x=y=z=\frac{2008}{3}\)
BĐT Bunhiacopxky em chưa học cô ạ
Cô cong cách nào không ạ
Nguyễn Thị Nguyệt Ánh:
Vậy thì bạn có thể chứng minh $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{9}{x+y+z}$ thông qua BĐT Cô-si:
Áp dụng BĐT Cô-si:
$x+y+z\geq 3\sqrt[3]{xyz}$
$xy+yz+xz\geq 3\sqrt[3]{x^2y^2z^2}$
Nhân theo vế:
$(x+y+z)(xy+yz+xz)\geq 9xyz$
$\Rightarrow \frac{xy+yz+xz}{xyz}\geq \frac{9}{x+y+z}$
hay $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{9}{x+y+z}$
\(A=\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}\)
\(=\frac{x^4}{xy+2zx}+\frac{y^4}{yz+2xy}+\frac{z^4}{zx+2yz}\)
\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{3\left(xy+yz+zx\right)}\ge\frac{x^2+y^2+z^2}{3}=\frac{1}{3}\)
Có : (a-b)^2>=0
<=> a^2+b^2-2ab >=0
<=>a^2+b^2 >= 2ab
<=>a^2+b^2+2ab >= 4ab
<=> (a+b)^2 >= 4ab
Với a,b >0 thì chia cả 2 vế cho (a+b).ab thì :
a+b/ab >= 4/a+b
<=>4/a+b <= 1/a+1/b
<=> 1/a+b <= 1/4.(1/a+1/b) ( với mọi a,b > 0 )
Áp dụng bđt trên cho x;y;z > 0 thì : x/2x+y+z = x. 1/(x+y)+(z+x) <= x/4 .( 1/x+y+1/x+z) = x/4.(x+y) + x/4.(x+z)
Tương tự : y/x+2y+z <= y/4.(y+x) + y/4.(y+z)
z/x+y+2z <= z/4.(z+x) + z/4.(z+y)
=> VT <= [ x/4.(x+y) + y/4.(y+x) ] + [ y/4.(y+z) + z/4.(z+y) ] + [ z/4.(z+x) + x/4.(x+z) ] = 1/4 + 1/4 + 1/4 = 3/4
=> ĐPCM
Dấu "=" xảy ra <=> x=y=z > 0
k mk nha
áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) với mọi a,b >0
Thì \(\frac{x}{x+y}+\frac{x}{x+z}\ge\frac{4x}{2x+y+z}\)
Tương tự thì đpcm
Cách này nhanh này thành đơ
a, x^3-y^2-y=1/3
=> x^3 = y^2+y+1/3 = (y^2+y+1/4)+1/12 = (y+1/2)^2+1/12 > 0
=> x > 0
Tương tự : y,z đều > 0
Tk mk nha
ta có hpt
<=>\(\hept{\begin{cases}x^3=\left(y+\frac{1}{2}\right)^2+\frac{1}{12}\\y^3=\left(z+\frac{1}{2}\right)^2+\frac{1}{12}\\z^3=\left(x+\frac{1}{2}\right)^2+\frac{1}{12}\end{cases}}\)
Vì vai trò x,y,z như nhau và x,y,z đều >0 ( câu a)
Giả sử \(x\ge y\Rightarrow x^3\ge y^3\Rightarrow\left(y+\frac{1}{2}\right)^2\ge\left(z+\frac{1}{2}\right)^2\) (1)
=>\(y+\frac{1}{2}\ge z+\frac{1}{3}\)
=>\(y\ge z\) (2)
với y>= z, từ pt(2) =>z>=x (3)
Từ 91),(2),(3)
=> x=y=z>0 (ĐPCM)
Với x=y=z>0, thay vào pt(1), Ta có
\(x^3-x^2-x-\frac{1}{3}=0\Leftrightarrow3x^3-3x^2-3x-1=0\)
<=>\(4x^3=x^3+3x^2+3x+1\Leftrightarrow4x^3=\left(x+1\right)^3\)
<=>\(\sqrt[3]{4}x=x+1\Leftrightarrow x\left(\sqrt[3]{4}-1\right)=1\Leftrightarrow x=\frac{1}{\sqrt[3]{4}-1}\)
Vãi cả lớp 8 học hệ pt , lạy mấy e rồi đó, :V
^_^
\(x\left(x-1\right)+y\left(y-1\right)+z\left(z-1\right)< =\frac{4}{3}\Rightarrow x^2-x+y^2-y+z^2-z< =\frac{4}{3}\)
\(\Rightarrow3x^2-3x+3y^2-3y+3z^2-3z< =4\Rightarrow3\left(x^2+y^2+z^2\right)-3\left(x+y+z\right)< =4\)
\(3\left(x^2+y^2+z^2\right)=\left(1+1+1\right)\left(x^2+y^2+z^2\right)>=\left(x+y+z\right)^2\)
\(\Rightarrow\left(x+y+z\right)^2-3\left(x+y+z\right)< =3\left(x^2+y^2+z^2\right)-3\left(x+y+z\right)< =4\)
\(\Rightarrow\left(x+y+z\right)^2-3\left(x+y+z\right)< =4\Rightarrow\left(x+y+z\right)\left(x+y+z-3\right)< =4\)
\(x+y+z>4\Rightarrow x+y+z-3>1\Rightarrow\left(x+y+z\right)\left(x+y+z-3\right)>4\cdot1=4\)(loại)
\(x+y+z=4\Rightarrow x+y+z-3=1\Rightarrow\left(x+y+z\right)\left(x+y+z-3\right)=4\cdot1=4\left(tm\right)\)
\(x+y+z< 4\Rightarrow x+y+z-3< 1\Rightarrow\left(x+y+z\right)\left(x+y+z-3\right)< 4\cdot1=4\left(tm\right)\)
\(\Rightarrow x+y+z< =4\)thì \(\left(x+y+z\right)\left(x+y+z-3\right)< =4\)
dấu = xảy ra khi \(x=y=z=\frac{4}{3}\)
vậy \(x\left(x-1\right)+y\left(y-1\right)+z\left(z-1\right)< =\frac{4}{3}\Rightarrow x+y+z< =4\)dấu = xảy ra khi \(x=y=z=\frac{4}{3}\)
Ta dễ dàng chứng minh BĐT
\(x^4+y^4\ge x^3y+xy^3\)
\(\Rightarrow2\left(x^4+y^4\right)\ge x^4+y^4+x^3y+xy^3=\left(x+y\right)\left(x^3+y^3\right)\)
\(\Rightarrow\frac{x^4+y^4}{x^3+y^3}\ge\frac{x+y}{2}\)
Chứng minh tương tự, cộng theo vế, ta có:
\(\frac{x^4+y^4}{x^3+y^3}+\frac{y^4+z^4}{y^3+z^3}+\frac{z^4+x^4}{z^3+x^3}\ge\frac{x+y}{2}+\frac{y+z}{2}+\frac{z+x}{2}=\frac{2\left(x+y+z\right)}{2}=2\)
Dấu "=" xảy ra khi x=y=z=1/3